R的t-test检验


1.t-test的功能:单因素二水平的假设检验。

H0:与我们想过要的结果相反的假设,比如我们想要的是两组数据的差异性,那么这个假设是:两组数据没有差异性。

H1或Ha:备择假设,与H0假设相反。

2.t-test的前提:正态性和方差齐性

3.R中的t-test的使用。

t.test(x, y = NULL,alternative = c("two.sided", "less", "greater"),mu = 0, paired = FALSE, var.equal = FALSE,conf.level = 0.95, ...)

或 t.test(formula, data, subset, na.action, ...)

> data
  druga drugb
1    10    20
2    11    21
3    13    19
4     9    18
> t.test(data$druga,data$drugb)

    Welch Two Sample t-test

data:  data$druga and data$drugb
t = -8.1742, df = 5.5846, p-value = 0.0002598
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.417221  -6.082779
sample estimates:
mean of x mean of y 
    10.75     19.50 
> df
  drug effect
1    1     10
2    1     11
3    1     13
4    1      9
5    2     20
6    2     21
7    2     19
8    2     18
> t.test(effect~drug,data=df)

    Welch Two Sample t-test

data:  effect by drug
t = -8.1742, df = 5.5846, p-value = 0.0002598
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -11.417221  -6.082779
sample estimates:
mean in group 1 mean in group 2 
          10.75           19.50 

结果解读:

t:t统计值。

df:自由度。

p:H0假设成立的概率。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM