数据可视化——matplotlib(2)


导入相关模块

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

图表设置

添加X、Y轴标签以及图标标题

a = (1,3,2,5,4)
b = (2,5,3,4,1)
plt.plot(a)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Test')
plt.show()

添加图例

简单的图例仅需要在画图函数中添加一个label标签就行,在绘制完后调用plt.legend()函数即可,如果需要使用更复杂的图例显示,可以查看官网文档,这里不做细说。

plt.plot(a, label='a')
plt.plot(b, label='b')
plt.legend()
plt.show()

坐标设置

设置坐标轴显示范围

坐标轴显示范围设置可以使用plt.xlim()和plt.ylim()函数实现。

plt.plot(a, label='a')
plt.xlim(xmin=0,xmax=10)
plt.ylim(ymin=0,ymax=10)
plt.show()

设置刻度

刻度的设置可以使用plt.xticks()和plt.yticks()来设置,需要传入的是原刻度以及对应刻度,比如:plt.xticks(x, ticks),这样就可以将X轴显示为想要显示的刻度了。刻度也可以设置为倾斜的,只需要添加一个rotation参数即可。

plt.plot(a)
ticks = 'abcde'
plt.xticks(range(5),ticks,rotation=30)
plt.show()

数据标签

plt中添加数据标签可以通过plt.text()方法。具体用法是:plt.text(x,y,label)

plt.plot(a)
for i in range(len(a)):
    plt.text(i,a[i], a[i])
plt.show()

当然,plt.text()还可以设置其它的参数,比如:

  • ha:horizontalalignment(水平对齐)
  • va:verticalalignment(垂直对齐)
  • fs:文字大小
    这些就不做说明了。
    至此,一些简单的设置都已经实现了。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM