Spark常用RDD操作总结


aggregateByKey

  • 函数原型:aggregateByKey(zeroValue, seqFunc, combFunc, numPartitions=None)
  • 参数与aggregate相同

  • 根据key进行合并

  • 上例稍加改动可以完成一个wordcounts

sc.parallelize(["hello world", "hello morning"])\ .flatMap(lambda line: line.split())\ .map(lambda letter: (letter, 1)).aggregateByKey(0, lambda x,y: y+x, lambda x,y: x+y)\ .collect() # [(1, 1), (1, 2), (2, 1), (2, 2)]

cartesian

  • 返回两个rdd的笛卡儿积
rdd1 = sc.parallelize([1, 2])
rdd2 = sc.parallelize([3, 4, 5])
rdd1.catesian(rdd2).cellect()
# [(1, 1), (1, 2), (2, 1), (2, 2)]

glom

  • 将一个一维横向列表,划分为多个块
sc.parallelize([1,2,3,4,5], 1).collect() # [1, 2, 3, 4, 5] sc.parallelize([1,2,3,4,5], 1).glom().collect() # [[1, 2, 3, 4, 5]] sc.parallelize([1,2,3,4,5], 2).glom().collect() # [[1, 2], [3, 4, 5]]

coalesce

  • 将多个块组合成n个大的列表
sc.parallelize([1,2,3,4,5], 3).coalesce(2).glom().collect() # [[1], [2, 3, 4, 5]] sc.parallelize([1,2,3,4,5], 3).coalesce(2).collect() # [1, 2, 3, 4, 5] sc.parallelize([1,2,3,4,5], 3).glom().collect() # [[1], [2, 3], [4, 5]]

cogroup

  • 函数原型:cogroup(other, numPartitions=None)

  • 按key聚合后,求两个RDD的并集。

x = sc.parallelize([("a", 1), ("b", 4)]) y = sc.parallelize([("a", 2)]) map((lambda (x,y): (x, (list(y[0]), list(y[1])))), sorted(list(x.cogroup(y).collect()))) # [('a', ([1], [2])), ('b', ([4], []))]

collectAsMap

  • 将rdd数据按KV对形式返回
sc.parallelize([(1,2), (3,4)]).collectAsMap() # {1: 2, 3: 4} sc.parallelize([(1, (2, 6666)), (3, 4)]).collectAsMap() # {1: (2, 6666), 3: 4}

combineByKey

  • 函数原型:combineByKey(createCombiner, mergeValue, mergeCombiners, numPartitions=None)

  • 根据key进行


count

  • 返回rdd中元素的数目
sc.parallelize([2,3,4]).count() # 3

countByKey

  • 按key聚合后计数
rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) rdd.countByKey().items() # [('a', 2), ('b', 1)]

countByValue

  • 按value聚合后再计数
sc.parallelize(["hello", "world", "hello", "china", "hello"]).countByValue().items() # [('world', 1), ('china', 1), ('hello', 3)]

countApprox

  • countApprox(timeout, confidence=0.95) 貌似在公司版本中还未提供 count的一个升级版(实验中),当超过timeout时,返回一个未完成的结果。
rdd = sc.parallelize(range(1000), 10)
rdd.countApprox(1000, 1.0)
# 1000

distinct

  • distinct(numPartitions=None) 返回rdd中unique的元素
sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect() # [1, 2, 3]

filter

  • 过滤一个RDD中,其每一行必须瞒住filter的条件
rdd = sc.parallelize([1, 2, 3, 4, 5]) rdd.filter(lambda x: x%2==0).collect() # [2, 4]

first

  • 返回rdd中的第一个元素
sc.parallelize([2, 3, 4]).first()

flatMap

  • flatMap(f, preservesPartitioning=False) 返回rdd中的所有元素,并把flatMap中返回的列表拉平。
rdd = sc.parallelize([2, 3, 4])
rdd.flatMap(lambda x: range(1, x)).collect()
# [1, 1, 1, 2, 2, 3]

flatMapValues

  • 同flatMap,但按照key进行flat,并最终拉平。
x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])]) def f(x): return x x.flatMapValues(f).collect() # [('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')]

fold

  • fold(zeroValue, op) 聚合RDD的每一个分区,最后再合并计算,每一个函数默认值为"zeroValue"。 op(t1,t2)函数可以更改t1并且将更改后的t1作为返回值返回以减少对象内存占用。切记不可个性t2的值。
def add(x,y): return x+y sc.parallelize([1, 2, 3, 4, 5]).fold(0, add) # 15


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM