spark rdd median 中位数求解


lookup(key)

Return the list of values in the RDD for key key. This operation is done efficiently if the RDD has a known partitioner by only searching the partition that the key maps to.

>>> l = range(1000) >>> rdd = sc.parallelize(zip(l, l), 10) >>> rdd.lookup(42) # slow [42] >>> sorted = rdd.sortByKey() >>> sorted.lookup(42) # fast [42] >>> sorted.lookup(1024) [] >>> rdd2 = sc.parallelize([(('a', 'b'), 'c')]).groupByKey() >>> list(rdd2.lookup(('a', 'b'))[0]) ['c']


You need to sort RDD and take element in the middle or average of two elements. Here is example with RDD[Int]:

  import org.apache.spark.SparkContext._

  val rdd: RDD[Int] = ???

  val sorted = rdd.sortBy(identity).zipWithIndex().map {
    case (v, idx) => (idx, v)
  }

  val count = sorted.count()

  val median: Double = if (count % 2 == 0) {
    val l = count / 2 - 1
    val r = l + 1
    (sorted.lookup(l).head + sorted.lookup(r).head).toDouble / 2
  } else sorted.lookup(count / 2).head.toDouble


实验:
all_data = sc.parallelize([25,1,2,3,4,5,6,7,8,100])
all_data.sortBy(lambda x:x).zipWithIndex().map(lambda x: (x[1],x[0])).collect
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 25), (9, 100)]

 





免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM