前言:
对于一个Android研发而言,亲身体会就是不管在平时开发或者面试的时候,Handler消息机制毋庸置疑都是一个必备的知识点,所以这边留一份个人笔记,如有分析不对的地方,还望指出!
目录:
1、如何分析Handler源码
2、源码大致流程:消息的入队与出队
3、从大致流程进入细化分析
3.1、Handler、Looper、MessageQueue三者之间的关系
3.2、Handler、Looper、MessageQueue之间的协作
总结图1:Handler在子线程中发送消息,消息会被添加到MessageQueue消息队列中,再来由Handler所处的当前线程的Looper来不断的轮询MessageQueue以获取出队消息,最后调用dispatchMessage进行消息传递给handleMessage进行处理
1、如何分析源码
众所皆知的Android源码的有很多,涉及到一个类或者多个类,一个类中又有很多代码,所以这边最简单的分析方式就是回归到Handler的使用中来,也就是如何使用Handler
1.1、实例一个Handler对象(主线程)
1.2、在子线程中使用Handler发送一个消息,如:handler.sendEmptyMessage(1)
1.3、消息发送出之后(执行1.2步骤),消息最终会被转发到我们new出来的Handler中的handleMessage方法进行处理(子线程消息发送到主线程中处理)
以上3个步骤即为我们对Handler的基本使用方式,所以,我们可以以发送消息的时机,作为源码分析的切入点,并留下一个疑问:
问题1:子线程发送的消息为什么是在主线程中接收的呢?
2、源码大致流程:消息的入队与出队
2.1、消息发送:sendMessage(Message msg) \ sendEmptyMessage(int what) \ postDelayed(Runnable r, long delayMillis) 等等
2.2、消息及发送时间处理:sendMessageAtTime(Message msg, long uptimeMillis)
2.3、消息队列添加:enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis)
2.4、消息出队:到这里,既然有消息添加到队列中的流程,而且我们最终都会获得相应的消息返回,那么消息是如何出队的呢?带着这个疑问,我们最终在MessageQueue 消息队列中找到一个函数名称为 next() 的函数。
问题2:这个next()函数 是在什么时候调用的呢?
在Handler源码上,以消息发送作为分析切入点来查看,如2.1罗列的几种消息发送方式,我们都可以很清楚的发现,消息都是调用了sendMessageDelayed(Message msg, long delayMillis),最终调用到sendMessageAtTime(Message msg, long uptimeMillis),然后在该方法里面调用了enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis),到这里,不管从方法名称还是局部变量的名称来看,这边都出现了一个队列的信息,所以可以知道Handler的消息发送最终是在sendMessageAtTime里面调用了MessageQueue.enqueueMessage()对消息进行队列添加,然后调用了MessageQueue.next()进行消息轮询并返回Message结果。
3、从大致流程进入细化分析
3.1、Handler、Looper、MessageQueue三者之间的 关系图2 如下:
在分析到第2步的sendMessageAtTime结束时,我们这边引出了一个消息队列的内容:MessageQueue queue = mQueue
1 /** 2 * Enqueue a message at the front of the message queue, to be processed on 3 * the next iteration of the message loop. You will receive it in 4 * {@link #handleMessage}, in the thread attached to this handler. 5 * <b>This method is only for use in very special circumstances -- it 6 * can easily starve the message queue, cause ordering problems, or have 7 * other unexpected side-effects.</b> 8 * 9 * @return Returns true if the message was successfully placed in to the 10 * message queue. Returns false on failure, usually because the 11 * looper processing the message queue is exiting. 12 */ 13 public final boolean sendMessageAtFrontOfQueue(Message msg) { 14 MessageQueue queue = mQueue; 15 if (queue == null) { 16 RuntimeException e = new RuntimeException( 17 this + " sendMessageAtTime() called with no mQueue"); 18 Log.w("Looper", e.getMessage(), e); 19 return false; 20 } 21 return enqueueMessage(queue, msg, 0); 22 } 23 24 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { 25 msg.target = this; 26 if (mAsynchronous) { 27 msg.setAsynchronous(true); 28 } 29 return queue.enqueueMessage(msg, uptimeMillis); 30 }
问题:mQueue是什么东西?这个mQueue是怎么来的?所以我们在Handler的构造方法中找到了它的初始化位置
1 /** 2 * Use the {@link Looper} for the current thread with the specified callback interface 3 * and set whether the handler should be asynchronous. 4 * 5 * Handlers are synchronous by default unless this constructor is used to make 6 * one that is strictly asynchronous. 7 * 8 * Asynchronous messages represent interrupts or events that do not require global ordering 9 * with respect to synchronous messages. Asynchronous messages are not subject to 10 * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}. 11 * 12 * @param callback The callback interface in which to handle messages, or null. 13 * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for 14 * each {@link Message} that is sent to it or {@link Runnable} that is posted to it. 15 * 16 * @hide 17 */ 18 public Handler(Callback callback, boolean async) { 19 if (FIND_POTENTIAL_LEAKS) { 20 final Class<? extends Handler> klass = getClass(); 21 if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && 22 (klass.getModifiers() & Modifier.STATIC) == 0) { 23 Log.w(TAG, "The following Handler class should be static or leaks might occur: " + 24 klass.getCanonicalName()); 25 } 26 } 27 28 mLooper = Looper.myLooper(); 29 if (mLooper == null) { 30 throw new RuntimeException( 31 "Can't create handler inside thread that has not called Looper.prepare()"); 32 } 33 mQueue = mLooper.mQueue; 34 mCallback = callback; 35 mAsynchronous = async; 36 }
到此,从上面的两段源码,且带着第2点中,next()被调用的时机问题,我们引出了os/Handler中的两个成员变量
final Looper mLooper; final MessageQueue mQueue;
MessageQueue 对象是从Looper中获得的,也就是说mQueue是在Looper中实例化的,所以很明显,Handler中的消息队列MessageQueue 是从轮询器Looper中获得的。
那么问题来了:为什么消息队列要在轮询器中进行实例化,请看以下源码
1 /** 2 * Return the {@link MessageQueue} object associated with the current 3 * thread. This must be called from a thread running a Looper, or a 4 * NullPointerException will be thrown. 5 */ 6 public static @NonNull MessageQueue myQueue() { 7 return myLooper().mQueue; 8 } 9 10 private Looper(boolean quitAllowed) { 11 mQueue = new MessageQueue(quitAllowed); 12 mThread = Thread.currentThread(); 13 }
MessageQueue在Looper中进行实例化,也就是说一个Looper就有一个MessageQueue,属于绑定关系,从而得出一个Looper只能轮询一个消息队列
所以可得出如关系图2中Handler、Looper、MessageQueue三者的关系:Handler中持有Looper和MessageQueue,Looper中持有MessageQueue,而且Handler中的MessageQueue来自于Looper中的MessageQueue。
Handler是使用时通过New实例化出来的,MessageQueue是在Looper中进行实例的,那么这个Looper是如何实例化的?所以这边我们将引出 ActivityThread。而ActivityThread是什么东西呢?这边就稍微介绍一下:
安卓应用程序作为一个控制类程序,跟Java程序类似,都是有一个入口的,而这个入口就是ActivityThread的main函数:
1 public static void main(String[] args) { 2 Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain"); 3 SamplingProfilerIntegration.start(); 4 5 // CloseGuard defaults to true and can be quite spammy. We 6 // disable it here, but selectively enable it later (via 7 // StrictMode) on debug builds, but using DropBox, not logs. 8 CloseGuard.setEnabled(false); 9 10 Environment.initForCurrentUser(); 11 12 // Set the reporter for event logging in libcore 13 EventLogger.setReporter(new EventLoggingReporter()); 14 15 // Make sure TrustedCertificateStore looks in the right place for CA certificates 16 final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId()); 17 TrustedCertificateStore.setDefaultUserDirectory(configDir); 18 19 Process.setArgV0("<pre-initialized>"); 20 21 Looper.prepareMainLooper(); 22 23 ActivityThread thread = new ActivityThread(); 24 thread.attach(false); 25 26 if (sMainThreadHandler == null) { 27 sMainThreadHandler = thread.getHandler(); 28 } 29 30 if (false) { 31 Looper.myLooper().setMessageLogging(new 32 LogPrinter(Log.DEBUG, "ActivityThread")); 33 } 34 35 // End of event ActivityThreadMain. 36 Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); 37 Looper.loop(); 38 39 throw new RuntimeException("Main thread loop unexpectedly exited"); 40 }
以上的main函数代码中,我们还需要意识到两个问题:
1.我们之所以可以在Activity用Handler handler=new Handler()直接创建出来就默认绑定到主线程了,是因为上面的代码为我们做了绑定主线程的Looper的事情,
2.主线程的Looper是不能在程序中调用退出的,最后一句代码看到没,如果调用的话,就会抛出异常,退出主线程的循环是框架层在调用退出应用程序的时候才调用的
1 /** 2 * Initialize the current thread as a looper, marking it as an 3 * application's main looper. The main looper for your application 4 * is created by the Android environment, so you should never need 5 * to call this function yourself. See also: {@link #prepare()} 6 */ 7 public static void prepareMainLooper() { 8 prepare(false); 9 synchronized (Looper.class) { 10 if (sMainLooper != null) { 11 throw new IllegalStateException("The main Looper has already been prepared."); 12 } 13 sMainLooper = myLooper(); 14 } 15 } 16 17 18 private static void prepare(boolean quitAllowed) { 19 if (sThreadLocal.get() != null) { 20 throw new RuntimeException("Only one Looper may be created per thread"); 21 } 22 sThreadLocal.set(new Looper(quitAllowed)); 23 }
在ActivityThread的main中调用了 Looper.prepareMainLooper() -> prepare(false) -> sThreadLocal.set(new Looper(quitAllowed)), 这么一来,是不是执行到了上面的Looper构造函数中了?到这里,细心的人会发现这么一个问题:
问题3:Looper被实例化出来之后并没有直接返回,而是被set到了ThreadLocal中?
Handler与Looper是成对出现的,一个子线程发送消息,一个主线程接收消息,那么这边就涉及到了多线程,线程之间的通讯,是需要保证数据的安全,即数据隔离,所以使用到了ThreadLocal进行线程管理:如A线程在获取数据时只能获取A线程所控制的数据,而不能去获取到B线程中对应的数据,否则就会引起数据不同步,比如A线程数据被B线程数据所覆盖之类的问题,同时也验证了一个线程只能关联一个Looper对象。
所以问题3解决了。最后这个main的结尾,调用了 Looper.loop(); 进行轮询消息队列! 是不是很完美了?
3.2、Handler、Looper、MessageQueue之间的协作
通过前面的源码分析,我们已经知道了消息是如果添加到消息队列了。我们再来看消息的出队分析。
以下在Looper轮询器中的loop()中我们看到这样一句代码:Message msg = queue.next(); // might block
1 /** 2 * Run the message queue in this thread. Be sure to call 3 * {@link #quit()} to end the loop. 4 */ 5 public static void loop() { 6 final Looper me = myLooper(); 7 if (me == null) { 8 throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); 9 } 10 final MessageQueue queue = me.mQueue; 11 12 // Make sure the identity of this thread is that of the local process, 13 // and keep track of what that identity token actually is. 14 Binder.clearCallingIdentity(); 15 final long ident = Binder.clearCallingIdentity(); 16 17 for (;;) { 18 Message msg = queue.next(); // might block 19 if (msg == null) { 20 // No message indicates that the message queue is quitting. 21 return; 22 } 23 24 // This must be in a local variable, in case a UI event sets the logger 25 final Printer logging = me.mLogging; 26 if (logging != null) { 27 logging.println(">>>>> Dispatching to " + msg.target + " " + 28 msg.callback + ": " + msg.what); 29 } 30 31 final long traceTag = me.mTraceTag; 32 if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { 33 Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); 34 } 35 try { 36 msg.target.dispatchMessage(msg); 37 } finally { 38 if (traceTag != 0) { 39 Trace.traceEnd(traceTag); 40 } 41 } 42 43 if (logging != null) { 44 logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); 45 } 46 47 // Make sure that during the course of dispatching the 48 // identity of the thread wasn't corrupted. 49 final long newIdent = Binder.clearCallingIdentity(); 50 if (ident != newIdent) { 51 Log.wtf(TAG, "Thread identity changed from 0x" 52 + Long.toHexString(ident) + " to 0x" 53 + Long.toHexString(newIdent) + " while dispatching to " 54 + msg.target.getClass().getName() + " " 55 + msg.callback + " what=" + msg.what); 56 } 57 58 msg.recycleUnchecked(); 59 } 60 }
所以通过以上代码,我们可以知道消息的出队,是在Looper这个轮询器中的loop()函数通过死循环的方式:for (;;),不断的通过队列的next()方法中拿到消息:queue.next(),并且如果队列消息为null了,就跳出该轮询。所以问题2是不是已经解决了?
在出队过程中,也就是MessageQueue消息队列中的next()函数中,我们可以知道next()返回的是一个Message消息对象,从函数注释上来看:当轮询器 loop 轮询的时候会返回一条消息,且从代码for (;;)循环的代码中可以看出,是在这里不断的拿到消息队列并返回下一条消息,到这里,我们需要注意的是因为这个消息是可以循环使用的,而且我们可以看到这样一个native函数调用:nativePollOnce(ptr, nextPollTimeoutMillis);所以我们可以得出消息的循环使用内存是通过C++来维护完成的(这边因为对native没有深入研究,所以pass这块!)
1 Message next() { 2 // Return here if the message loop has already quit and been disposed. 3 // This can happen if the application tries to restart a looper after quit 4 // which is not supported. 5 final long ptr = mPtr; 6 if (ptr == 0) { 7 return null; 8 } 9 10 int pendingIdleHandlerCount = -1; // -1 only during first iteration 11 int nextPollTimeoutMillis = 0; 12 for (;;) { 13 if (nextPollTimeoutMillis != 0) { 14 Binder.flushPendingCommands(); 15 } 16 17 nativePollOnce(ptr, nextPollTimeoutMillis); 18 19 synchronized (this) { 20 // Try to retrieve the next message. Return if found. 21 final long now = SystemClock.uptimeMillis(); 22 Message prevMsg = null; 23 Message msg = mMessages; 24 if (msg != null && msg.target == null) { 25 // Stalled by a barrier. Find the next asynchronous message in the queue. 26 do { 27 prevMsg = msg; 28 msg = msg.next; 29 } while (msg != null && !msg.isAsynchronous()); 30 } 31 if (msg != null) { 32 if (now < msg.when) { 33 // Next message is not ready. Set a timeout to wake up when it is ready. 34 nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); 35 } else { 36 // Got a message. 37 mBlocked = false; 38 if (prevMsg != null) { 39 prevMsg.next = msg.next; 40 } else { 41 mMessages = msg.next; 42 } 43 msg.next = null; 44 if (DEBUG) Log.v(TAG, "Returning message: " + msg); 45 msg.markInUse(); 46 return msg; 47 } 48 } else { 49 // No more messages. 50 nextPollTimeoutMillis = -1; 51 } 52 53 // Process the quit message now that all pending messages have been handled. 54 if (mQuitting) { 55 dispose(); 56 return null; 57 } 58 59 // If first time idle, then get the number of idlers to run. 60 // Idle handles only run if the queue is empty or if the first message 61 // in the queue (possibly a barrier) is due to be handled in the future. 62 if (pendingIdleHandlerCount < 0 63 && (mMessages == null || now < mMessages.when)) { 64 pendingIdleHandlerCount = mIdleHandlers.size(); 65 } 66 if (pendingIdleHandlerCount <= 0) { 67 // No idle handlers to run. Loop and wait some more. 68 mBlocked = true; 69 continue; 70 } 71 72 if (mPendingIdleHandlers == null) { 73 mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; 74 } 75 mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); 76 } 77 78 // Run the idle handlers. 79 // We only ever reach this code block during the first iteration. 80 for (int i = 0; i < pendingIdleHandlerCount; i++) { 81 final IdleHandler idler = mPendingIdleHandlers[i]; 82 mPendingIdleHandlers[i] = null; // release the reference to the handler 83 84 boolean keep = false; 85 try { 86 keep = idler.queueIdle(); 87 } catch (Throwable t) { 88 Log.wtf(TAG, "IdleHandler threw exception", t); 89 } 90 91 if (!keep) { 92 synchronized (this) { 93 mIdleHandlers.remove(idler); 94 } 95 } 96 } 97 98 // Reset the idle handler count to 0 so we do not run them again. 99 pendingIdleHandlerCount = 0; 100 101 // While calling an idle handler, a new message could have been delivered 102 // so go back and look again for a pending message without waiting. 103 nextPollTimeoutMillis = 0; 104 } 105 }
到这边,如果所有的分析及源码查看都看懂的话,我们就已经掌握了在整个Handler消息机制中,是如何从一个消息的发送,进行了怎么样的世界环游,最终如何回到了Handler的handleMessage中的!
分析到这里为止,如果还没蒙圈的人会发现,我们在前面提出过的几个问题都解决了,那么问题1呢?
子线程发送的消息为什么是在主线程中接收的呢?
其实我们在前面也已经有提及到了该问题,就是为什么在ActivityThread的main中实例化的Looper对象是被set到了ThreadLocal中。
在java中,main是不是主线程呢?不需要解释了吧。看代码:当前线程中Looper的获取方式
1 /** 2 * Return the Looper object associated with the current thread. Returns 3 * null if the calling thread is not associated with a Looper. 4 */ 5 public static @Nullable Looper myLooper() { 6 return sThreadLocal.get(); 7 }
程序一开始在ActivityThread在执行main函数时实例化Looper,然后保存到了ThreadLocal中。而我们在主线程中new了一个Handler,那么Handler默认对应的Looper就是主线程的Looper:通过以上代码,从ThreadLocal管理中获取出当前线程(主线程)对应的Looper对象,所以对应的Looper自然也是主线程的Looper,明白了吗?
所以主线程的Looper在轮询出消息队列MessageQueue中的消息时,就是出于主线程中,这样问题1是不是就清楚了。