前言
如标题,当我们看到地址栏中参数是这样的:http://localhost:5955/Edit/Index?Id=123的时候,我们很清楚知道,这是根据用户ID获取到了用户详细信息。
但是这样存在一个问题。如果后台程序没有做任何限制和处理的情况下,A用户可以修改参数Id的值,从而查看到其他用户信息。这里提供一个解决思路,前台给Id加上唯一的票据 Token,新url地址如下:
http://localhost:5955/Edit/Index?token=9a6b59da46371d86eb75259c956aee4b580c0119&id=123
可以通过前台用js加密Id传入到token中,后台用相同的加密方式对Id进行加密或者解密看看是否是相同的值,如果是,则表明是当前登陆用户访问该页面,如果不是,则可提示不可越级访问。
这里是采用Sha1,JS文件如下:

/* * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined * in FIPS PUB 180-1 * Version 2.1-BETA Copyright Paul Johnston 2000 - 2002. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for details. */ /* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ var chrsz = 8; /* bits per input character. 8 - ASCII; 16 - Unicode */ /* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ function hex_sha1(s) { return binb2hex(core_sha1(str2binb(s), s.length * chrsz)); } function b64_sha1(s) { return binb2b64(core_sha1(str2binb(s), s.length * chrsz)); } function str_sha1(s) { return binb2str(core_sha1(str2binb(s), s.length * chrsz)); } function hex_hmac_sha1(key, data) { return binb2hex(core_hmac_sha1(key, data)); } function b64_hmac_sha1(key, data) { return binb2b64(core_hmac_sha1(key, data)); } function str_hmac_sha1(key, data) { return binb2str(core_hmac_sha1(key, data)); } /* * Perform a simple self-test to see if the VM is working */ function sha1_vm_test() { return hex_sha1("abc") == "a9993e364706816aba3e25717850c26c9cd0d89d"; } /* * Calculate the SHA-1 of an array of big-endian words, and a bit length */ function core_sha1(x, len) { /* append padding */ x[len >> 5] |= 0x80 << (24 - len % 32); x[((len + 64 >> 9) << 4) + 15] = len; var w = Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for (var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for (var j = 0; j < 80; j++) { if (j < 16) w[j] = x[i + j]; else w[j] = rol(w[j - 3] ^ w[j - 8] ^ w[j - 14] ^ w[j - 16], 1); var t = safe_add(safe_add(rol(a, 5), sha1_ft(j, b, c, d)), safe_add(safe_add(e, w[j]), sha1_kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = safe_add(a, olda); b = safe_add(b, oldb); c = safe_add(c, oldc); d = safe_add(d, oldd); e = safe_add(e, olde); } return Array(a, b, c, d, e); } /* * Perform the appropriate triplet combination function for the current * iteration */ function sha1_ft(t, b, c, d) { if (t < 20) return (b & c) | ((~b) & d); if (t < 40) return b ^ c ^ d; if (t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; } /* * Determine the appropriate additive constant for the current iteration */ function sha1_kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; } /* * Calculate the HMAC-SHA1 of a key and some data */ function core_hmac_sha1(key, data) { var bkey = str2binb(key); if (bkey.length > 16) bkey = core_sha1(bkey, key.length * chrsz); var ipad = Array(16), opad = Array(16); for (var i = 0; i < 16; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = core_sha1(ipad.concat(str2binb(data)), 512 + data.length * chrsz); return core_sha1(opad.concat(hash), 512 + 160); } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ function safe_add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left. */ function rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } /* * Convert an 8-bit or 16-bit string to an array of big-endian words * In 8-bit function, characters >255 have their hi-byte silently ignored. */ function str2binb(str) { var bin = Array(); var mask = (1 << chrsz) - 1; for (var i = 0; i < str.length * chrsz; i += chrsz) bin[i >> 5] |= (str.charCodeAt(i / chrsz) & mask) << (24 - i % 32); return bin; } /* * Convert an array of big-endian words to a string */ function binb2str(bin) { var str = ""; var mask = (1 << chrsz) - 1; for (var i = 0; i < bin.length * 32; i += chrsz) str += String.fromCharCode((bin[i >> 5] >>> (24 - i % 32)) & mask); return str; } /* * Convert an array of big-endian words to a hex string. */ function binb2hex(binarray) { var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var str = ""; for (var i = 0; i < binarray.length * 4; i++) { str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) + hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF); } return str; } /* * Convert an array of big-endian words to a base-64 string */ function binb2b64(binarray) { var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var str = ""; for (var i = 0; i < binarray.length * 4; i += 3) { var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) | (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) | ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF); for (var j = 0; j < 4; j++) { if (i * 8 + j * 6 > binarray.length * 32) str += b64pad; else str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F); } } return str; }
直接把上面代码写在一个新建的sha1。js文件类引入项目即可。使用方式:
return window.location.href = "/Edit/Index?token=" + hex_sha1(''+id+'') + "&id=" + id;
后台sha1加密代码:
/// <summary> /// 基于Sha1的自定义加密字符串方法:输入一个字符串,返回一个由40个字符组成的十六进制的哈希散列(字符串)。 /// </summary> /// <param name="str">要加密的字符串</param> /// <returns>加密后的十六进制的哈希散列(字符串)</returns> public string Sha1(string str) { StringBuilder result = new StringBuilder(); var data = Encoding.UTF8.GetBytes(str); SHA1 sha = new SHA1CryptoServiceProvider(); var resultArr = sha.ComputeHash(data); for (int i = 0; i < resultArr.Length; i++) { var tmp = String.Format("{0:X2}", resultArr[i] & 0xFF); if (tmp.Length == 1) { result.Append("0"); } result.Append(tmp); } var passwd = result.ToString(); StringBuilder password = new StringBuilder(); foreach (char c in passwd) { if (c >= 'A' && c <= 'Z') { password.Append(char.ToLower(c)); } else { password.Append(c); } } string passwords = password.ToString(); return passwords; }
使用方式:再Index控制器里面传入token然后用id再次加密进行和传入token对比
var ids = Request.QueryString["Id"]; //拿到sha1加密后的token和传入token对比,否则无权查看跳转回登陆页 if (token.Equals(Sha1(id.ToString()))) { ViewBag.Id = ids; PersonalView model = personalBLL.GetPersonalAccountByID(int.Parse(ids));//获取用户详细信息 string accountTypes = string.Empty; if (!(model == null || model.PersonInfo == null)) { accountTypes = model.PersonInfo.AccCollection; } InitDropList(accountTypes); ViewBag.pathSrc = _pathSrc; return View(model); } else { //访问其他用户信息,跳转到登录页 return Redirect("/Home/Login"); }
注:此种方式治标不治本,如果用户知道这种加密方式,那就完全可以用另一个id比如456,去生成一个sha1的加密key过来,替换依然可以登录,所以,最好的方式是不要使用url传值。。。