python 去停用词


Try caching the stopwords object, as shown below. Constructing this each time you call the function seems to be the bottleneck.

 from nltk.corpus import stopwords cachedStopWords = stopwords.words("english") def testFuncOld(): text = 'hello bye the the hi' text = ' '.join([word for word in text.split() if word not in stopwords.words("english")]) def testFuncNew(): text = 'hello bye the the hi' text = ' '.join([word for word in text.split() if word not in cachedStopWords]) if __name__ == "__main__": for i in xrange(10000): testFuncOld() testFuncNew()

I ran this through the profiler: python -m cProfile -s cumulative test.py. The relevant lines are posted below.

nCalls Cumulative Time

10000 7.723 words.py:7(testFuncOld)

10000 0.140 words.py:11(testFuncNew)

So, caching the stopwords instance gives a ~70x speedup.


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM