R语言-merge和rbind


rbind

使用方式 
合并两个数据集,要求两个数据集的列数相等:

rbind(parameter1,parameter2)
  • 1
  • 1

合并多个数据集,各个数据集的列数相等:

rbind(parameter1,parameter2,...,parametern)
  • 1
  • 1

从数据集中提取数据

test <- rbind() for (i in 1:length(s_5)) { test <- rbind(test,data[s_5[i],]) }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5

merge

merge函数的声明:

merge(x, y, by = intersect(names(x), names(y)), by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all, sort = TRUE, suffixes = c(".x",".y"), incomparables = NULL, ...)
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

merge函数参数的说明:

参数 说明
x,y 用于合并的两个数据框
by,by.x,by.y 指定依据哪些行合并数据框,默认值为相同列名的列.
all,all.x,all.y 指定x和y的行是否应该全在输出文件.
sort by指定的列是否要排序.
suffixes 指定除by外相同列名的后缀.
incomparables 指定by中哪些单元不进行合并.

例子:

w1: NAME SCHOOL CLASS ENGLISH A S1 10 85 B S2 5 50 A S1 4 90 A S1 11 90 C S1 1 12 w2: NAME SCHOOL CLASS MATHS ENGLISH A S3 5 80 88 B S2 5 89 81 C S1 1 55 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

按照NAME, SCHOOL, CLASS合并w1和w2:

merge(w1, w2, all = T) NAME SCHOOL CLASS ENGLISH MATHS 1 A S1 4 90 NA 2 A S1 10 85 NA 3 A S1 11 90 NA 4 A S3 5 88 80 5 B S2 5 50 NA 6 B S2 5 81 89 7 C S1 1 12 NA 8 C S1 1 32 55 merge(w1, w2, by = c("NAME", "SCHOOL", "CLASS"), all = T) NAME SCHOOL CLASS ENGLISH.x MATHS ENGLISH.y A S1 4 90 NA NA A S1 10 85 NA NA A S1 11 90 NA NA A S3 5 NA 80 88 B S2 5 50 89 81 C S1 1 12 55 32 merge(w1, w2, all = T, incomparables = "A") Error in merge.data.frame(w1, w2, all = T, incomparables = "A") : 'incomparables' is supported only for merging on a single column merge(w1, w2, all = T, by = "NAME", incomparables = "A") NAME SCHOOL.x CLASS.x ENGLISH.x SCHOOL.y CLASS.y MATHS ENGLISH.y A S1 10 85 <NA> NA NA NA A S1 4 90 <NA> NA NA NA A S1 11 90 <NA> NA NA NA A <NA> NA NA S3 5 80 88 B S2 5 50 S2 5 89 81 C S1 1 12 S1 1 55 32
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

横向合并

ID<-c(1,2,3,4) name<-c("Jim","Tony","Lisa","Tom") score<-c(89,22,78,78) student1<-data.frame(ID,name) student2<-data.frame(ID,score) total_student<-merge(student1,student2,by="ID") total_student
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

当然merge也可以使用纵向合并

merge(data1,dadta2,all=T)
  • 1
  • 1

纵向合并

ID<-c(1,2,3) name<-c("Jame","Kevin","Sunny") student1<-data.frame(ID,name) ID<-c(4,5,6) name<-c("Sun","Frame","Eric") student2<-data.frame(ID,name) total<-rbind(student1,student2) total
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
 
 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM