C++实现八皇后问题
#include <iostream>
using std::cout;
using std::endl;
#include <iomanip>
using std::setw;
#include <cmath>
//非递归算法解决八皇后问题。求出可能的92种。
// using std::abs;
int main()
{
static int queen[9];
static int count=1;
for (int A=1;A<=8;A++)
{
for (int B=1;B<=8;B++)
{
if (B==A)
{
continue;
}
queen[2]=B;
if ((abs(B-A))==1)
{
continue;
}
queen[1]=A;
for (int C=1;C<=8;C++)
{
if ((C==B) || (C==A))
{
continue;
}
if ((abs(C-B)==1)||(abs(C-A)==2))
{
continue;
}
queen[3]=C;
for (int D=1;D<=8;D++)
{
if ((D==C)||(D==B)||(D==A))
{
continue;
}
if ((abs(D-C)==1)||(abs(D-B)==2)||(abs(D-A)==3))
{
continue;
}
queen[4]=D;
for (int E=1;E<=8;E++)
{
if ((E==D)||(E==C)||(E==B)||(E==A))
{
continue;
}
if ((abs(E-D)==1)||(abs(E-C)==2)||(abs(E-B)==3)||(abs(E-A)==4))
{
continue;
}
queen[5]=E;
for (int F=1;F<=8;F++)
{
if ((F==E)||(F==D)||(F==C)||(F==B)||(F==A))
{
continue;
}
if ((abs(F-E)==1)||(abs(F-D)==2)||(abs(F-C)==3)||(abs(F-B)==4)||(abs(F-A)==5))
{
continue;
}
queen[6]=F;
for (int G=1;G<=8;G++)
{
if ((G==F)||(G==E)||(G==D)||(G==C)||(G==B)||(G==A))
{
continue;
}
if ((abs(G-F)==1)||(abs(G-E)==2)||(abs(G-D)==3)||(abs(G-C)==4)||(abs(G-B)==5)||(abs(G-A)==6))
{
continue;
}
queen[7]=G;
for (int I=1;I<=8;I++)
{
if ((I==G)||(I==F)||(I==E)||(I==D)||(I==C)||(I==B)||(I==A))
{
continue;
}
if ((abs(I-G)==1)||(abs(I-F)==2)||(abs(I-E)==3)||(abs(I-D)==4)||(abs(I-C)==5)
||(abs(I-B)==6)||(abs(I-A)==7))
{
continue;
}
queen[8]=I;
cout<<" NO."<<setw(2)<<count<<": ";
for (int i=1;i<=8;i++)
{
cout<<setw(3)<<queen[i];
}
count++;
cout<<endl;
}
}
}
}
}
}
}
}
return 0;
}
#include <iostream> using namespace std; //递归算法解决八皇后问题。总共有92种解法。 int c[20], n=8, cnt=0; void print(){ for(int i=0; i<n; ++i){ for(int j=0; j<n; ++j){ if(j == c[i]) cout<<"1 "; else cout<<"0 "; } cout<<endl; } cout<<endl; } void search(int r){ if(r == n){ print(); ++cnt; return; } for(int i=0; i<n; ++i){ c[r] = i; int ok = 1; for(int j=0; j<r; ++j) if(c[r]==c[j] || r-j==c[r]-c[j] || r-j==c[j]-c[r]){ ok = 0; break; } if(ok) search(r+1); } } int main(){ search(0); cout<<cnt<<endl; return 0; }
