Python开发【面试】:刷题


面试题

1、到底什么是Python?

  • Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译(一边编写一边执行,先把代码转化成字节码,然后python虚拟机去执行)。其他解释型语言还包括PHP和Ruby
  • Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)
  • Python代码编写快,但是运行速度比编译语言通常要慢。好在Python允许加入基于C语言编写的扩展,因此我们能够优化代码,消除瓶颈,这点通常是可以实现的
  • Python用途非常广泛——网络应用,自动化,科学建模,大数据应用,爬虫等等。它也常被用作“胶水语言”,帮助其他语言和组件改善运行状况
  • Python让困难的事情变得容易,因此程序员可以专注于算法和数据结构的设计,而不用处理底层的细节

 

 2、补充缺失的代码

def print_directory_contents(sPath):
    '''
   输入文件夹的路径(绝对和相对均可)
   打印文件夹里面包含的所有文件名(子子孙孙,带完整的路径)
    ''''
1 def print_directory_contents(sPath):
2     import os
3     for sChild in os.listdir(sPath):
4         sChild = os.path.join(sPath,sChild)
5         if os.path.isdir(sChild):
6             print_directory_contents(sChild)
7         else:
8             print(sChild)
答案.

 

3、阅读下面的代码,写出A0,A1至An的最终值

  • A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
  • A1 = range(10)
  • A2 = [i for i in A1 if i in A0]
  • A3 = [A0[s] for s in A0]
  • A4 = [i for i in A1 if i in A3]
  • A5 = {i:i*i for i in A1}
  • A6 = [[i,i*i] for i in A1]
A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4}
A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
A2 = []
A3 = [1, 3, 2, 5, 4]
A4 = [1, 2, 3, 4, 5]
A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]
答案.

 

4、Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法

Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading包并不是一个很好的方法。

不过还是有很多理由促使我们使用threading包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。

为什么提这个问题

因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。

 

5、下面代码会输出什么:

def f(x,l=[]):
    for i in range(x):
        l.append(i*i)
    print l

f(2)
f(3,[3,2,1])
f(3)
1 [0, 1]
2 [3, 2, 1, 0, 1, 4]
3 [0, 1, 0, 1, 4]
答案.

 

6、“猴子补丁”(monkey patching)指的是什么?这种做法好吗?

“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。

举个例子:

import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)

大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock包对实现这个目的很有帮助。

 

7、这两个参数是什么意思:*args**kwargs?我们为什么要使用它们

如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargsargskwargs这两个标识符是约定俗成的用法,你当然还可以用*bob**billy,但是这样就并不太妥

 

8、阅读下面的代码,它的输出结果是什么?

class A(object):
    def go(self):
        print "go A go!"
    def stop(self):
        print "stop A stop!"
    def pause(self):
        raise Exception("Not Implemented")

class B(A):
    def go(self):
        super(B, self).go()
        print "go B go!"

class C(A):
    def go(self):
        super(C, self).go()
        print "go C go!"
    def stop(self):
        super(C, self).stop()
        print "stop C stop!"

class D(B,C):
    def go(self):
        super(D, self).go()
        print "go D go!"
    def stop(self):
        super(D, self).stop()
        print "stop D stop!"
    def pause(self):
        print "wait D wait!"

class E(B,C): pass

a = A()
b = B()
c = C()
d = D()
e = E()

# 说明下列代码的输出结果

a.go()
b.go()
c.go()
d.go()
e.go()

a.stop()
b.stop()
c.stop()
d.stop()
e.stop()

a.pause()
b.pause()
c.pause()
d.pause()
e.pause()
输出结果以注释的形式表示:

a.go()
# go A go!

b.go()
# go A go!
# go B go!

c.go()
# go A go!
# go C go!

d.go()
# go A go!
# go C go!
# go B go!
# go D go!

e.go()
# go A go!
# go C go!
# go B go!

a.stop()
# stop A stop!

b.stop()
# stop A stop!

c.stop()
# stop A stop!
# stop C stop!

d.stop()
# stop A stop!
# stop C stop!
# stop D stop!

e.stop()
# stop A stop!

a.pause()
# ... Exception: Not Implemented

b.pause()
# ... Exception: Not Implemented

c.pause()
# ... Exception: Not Implemented

d.pause()
# wait D wait!

e.pause()
# ...Exception: Not Implemented
答案

 

9、阅读下面的代码,它的输出结果是什么?

class Node(object):
    def __init__(self,sName):
        self._lChildren = []
        self.sName = sName
    def __repr__(self):
        return "<Node '{}'>".format(self.sName)
    def append(self,*args,**kwargs):
        self._lChildren.append(*args,**kwargs)
    def print_all_1(self):
        print self
        for oChild in self._lChildren:
            oChild.print_all_1()
    def print_all_2(self):
        def gen(o):
            lAll = [o,]
            while lAll:
                oNext = lAll.pop(0)
                lAll.extend(oNext._lChildren)
                yield oNext
        for oNode in gen(self):
            print oNode

oRoot = Node("root")
oChild1 = Node("child1")
oChild2 = Node("child2")
oChild3 = Node("child3")
oChild4 = Node("child4")
oChild5 = Node("child5")
oChild6 = Node("child6")
oChild7 = Node("child7")
oChild8 = Node("child8")
oChild9 = Node("child9")
oChild10 = Node("child10")

oRoot.append(oChild1)
oRoot.append(oChild2)
oRoot.append(oChild3)
oChild1.append(oChild4)
oChild1.append(oChild5)
oChild2.append(oChild6)
oChild4.append(oChild7)
oChild3.append(oChild8)
oChild3.append(oChild9)
oChild6.append(oChild10)

# 说明下面代码的输出结果

oRoot.print_all_1()
oRoot.print_all_2()
 1 oRoot.print_all_1()会打印下面的结果:
 2 
 3 <Node 'root'>
 4 <Node 'child1'>
 5 <Node 'child4'>
 6 <Node 'child7'>
 7 <Node 'child5'>
 8 <Node 'child2'>
 9 <Node 'child6'>
10 <Node 'child10'>
11 <Node 'child3'>
12 <Node 'child8'>
13 <Node 'child9'>
14 oRoot.print_all_1()会打印下面的结果:
15 
16 <Node 'root'>
17 <Node 'child1'>
18 <Node 'child2'>
19 <Node 'child3'>
20 <Node 'child4'>
21 <Node 'child5'>
22 <Node 'child6'>
23 <Node 'child8'>
24 <Node 'child9'>
25 <Node 'child7'>
26 <Node 'child10'>
答案.

 

10、简要描述Python的垃圾回收机制(garbage collection) 

  • Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。
  • 偶尔也会出现引用循环(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1o2,而且符合o1.x == o2o2.x == o1这两个条件。如果o1o2没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。
  • Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。

  

 

  

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM