面试题
1、到底什么是Python?
- Python是一种解释型语言。这就是说,与C语言和C的衍生语言不同,Python代码在运行之前不需要编译(一边编写一边执行,先把代码转化成字节码,然后python虚拟机去执行)。其他解释型语言还包括PHP和Ruby
- Python非常适合面向对象的编程(OOP),因为它支持通过组合(composition)与继承(inheritance)的方式定义类(class)
- Python代码编写快,但是运行速度比编译语言通常要慢。好在Python允许加入基于C语言编写的扩展,因此我们能够优化代码,消除瓶颈,这点通常是可以实现的
- Python用途非常广泛——网络应用,自动化,科学建模,大数据应用,爬虫等等。它也常被用作“胶水语言”,帮助其他语言和组件改善运行状况
- Python让困难的事情变得容易,因此程序员可以专注于算法和数据结构的设计,而不用处理底层的细节
2、补充缺失的代码
def print_directory_contents(sPath): ''' 输入文件夹的路径(绝对和相对均可) 打印文件夹里面包含的所有文件名(子子孙孙,带完整的路径) ''''

1 def print_directory_contents(sPath): 2 import os 3 for sChild in os.listdir(sPath): 4 sChild = os.path.join(sPath,sChild) 5 if os.path.isdir(sChild): 6 print_directory_contents(sChild) 7 else: 8 print(sChild)
3、阅读下面的代码,写出A0,A1至An的最终值
- A0 = dict(zip(('a','b','c','d','e'),(1,2,3,4,5)))
- A1 = range(10)
- A2 = [i for i in A1 if i in A0]
- A3 = [A0[s] for s in A0]
- A4 = [i for i in A1 if i in A3]
- A5 = {i:i*i for i in A1}
- A6 = [[i,i*i] for i in A1]

A0 = {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4} A1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] A2 = [] A3 = [1, 3, 2, 5, 4] A4 = [1, 2, 3, 4, 5] A5 = {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} A6 = [[0, 0], [1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36], [7, 49], [8, 64], [9, 81]]
4、Python和多线程(multi-threading)。这是个好主意码?列举一些让Python代码以并行方式运行的方法
Python并不支持真正意义上的多线程。Python中提供了多线程包,但是如果你想通过多线程提高代码的速度,使用多线程包并不是个好主意。Python中有一个被称为Global Interpreter Lock(GIL)的东西,它会确保任何时候你的多个线程中,只有一个被执行。线程的执行速度非常之快,会让你误以为线程是并行执行的,但是实际上都是轮流执行。经过GIL这一道关卡处理,会增加执行的开销。这意味着,如果你想提高代码的运行速度,使用threading
包并不是一个很好的方法。
不过还是有很多理由促使我们使用threading
包的。如果你想同时执行一些任务,而且不考虑效率问题,那么使用这个包是完全没问题的,而且也很方便。但是大部分情况下,并不是这么一回事,你会希望把多线程的部分外包给操作系统完成(通过开启多个进程),或者是某些调用你的Python代码的外部程序(例如Spark或Hadoop),又或者是你的Python代码调用的其他代码(例如,你可以在Python中调用C函数,用于处理开销较大的多线程工作)。
为什么提这个问题
因为GIL就是个混账东西(A-hole)。很多人花费大量的时间,试图寻找自己多线程代码中的瓶颈,直到他们明白GIL的存在。
5、下面代码会输出什么:
def f(x,l=[]): for i in range(x): l.append(i*i) print l f(2) f(3,[3,2,1]) f(3)

1 [0, 1] 2 [3, 2, 1, 0, 1, 4] 3 [0, 1, 0, 1, 4]
6、“猴子补丁”(monkey patching)指的是什么?这种做法好吗?
“猴子补丁”就是指,在函数或对象已经定义之后,再去改变它们的行为。
举个例子:
import datetime
datetime.datetime.now = lambda: datetime.datetime(2012, 12, 12)
大部分情况下,这是种很不好的做法 - 因为函数在代码库中的行为最好是都保持一致。打“猴子补丁”的原因可能是为了测试。mock
包对实现这个目的很有帮助。
7、这两个参数是什么意思:*args
,**kwargs
?我们为什么要使用它们?
如果我们不确定要往函数中传入多少个参数,或者我们想往函数中以列表和元组的形式传参数时,那就使要用*args
;如果我们不知道要往函数中传入多少个关键词参数,或者想传入字典的值作为关键词参数时,那就要使用**kwargs
。args
和kwargs
这两个标识符是约定俗成的用法,你当然还可以用*bob
和**billy
,但是这样就并不太妥
8、阅读下面的代码,它的输出结果是什么?
class A(object): def go(self): print "go A go!" def stop(self): print "stop A stop!" def pause(self): raise Exception("Not Implemented") class B(A): def go(self): super(B, self).go() print "go B go!" class C(A): def go(self): super(C, self).go() print "go C go!" def stop(self): super(C, self).stop() print "stop C stop!" class D(B,C): def go(self): super(D, self).go() print "go D go!" def stop(self): super(D, self).stop() print "stop D stop!" def pause(self): print "wait D wait!" class E(B,C): pass a = A() b = B() c = C() d = D() e = E() # 说明下列代码的输出结果 a.go() b.go() c.go() d.go() e.go() a.stop() b.stop() c.stop() d.stop() e.stop() a.pause() b.pause() c.pause() d.pause() e.pause()

输出结果以注释的形式表示: a.go() # go A go! b.go() # go A go! # go B go! c.go() # go A go! # go C go! d.go() # go A go! # go C go! # go B go! # go D go! e.go() # go A go! # go C go! # go B go! a.stop() # stop A stop! b.stop() # stop A stop! c.stop() # stop A stop! # stop C stop! d.stop() # stop A stop! # stop C stop! # stop D stop! e.stop() # stop A stop! a.pause() # ... Exception: Not Implemented b.pause() # ... Exception: Not Implemented c.pause() # ... Exception: Not Implemented d.pause() # wait D wait! e.pause() # ...Exception: Not Implemented
9、阅读下面的代码,它的输出结果是什么?
class Node(object): def __init__(self,sName): self._lChildren = [] self.sName = sName def __repr__(self): return "<Node '{}'>".format(self.sName) def append(self,*args,**kwargs): self._lChildren.append(*args,**kwargs) def print_all_1(self): print self for oChild in self._lChildren: oChild.print_all_1() def print_all_2(self): def gen(o): lAll = [o,] while lAll: oNext = lAll.pop(0) lAll.extend(oNext._lChildren) yield oNext for oNode in gen(self): print oNode oRoot = Node("root") oChild1 = Node("child1") oChild2 = Node("child2") oChild3 = Node("child3") oChild4 = Node("child4") oChild5 = Node("child5") oChild6 = Node("child6") oChild7 = Node("child7") oChild8 = Node("child8") oChild9 = Node("child9") oChild10 = Node("child10") oRoot.append(oChild1) oRoot.append(oChild2) oRoot.append(oChild3) oChild1.append(oChild4) oChild1.append(oChild5) oChild2.append(oChild6) oChild4.append(oChild7) oChild3.append(oChild8) oChild3.append(oChild9) oChild6.append(oChild10) # 说明下面代码的输出结果 oRoot.print_all_1() oRoot.print_all_2()

1 oRoot.print_all_1()会打印下面的结果: 2 3 <Node 'root'> 4 <Node 'child1'> 5 <Node 'child4'> 6 <Node 'child7'> 7 <Node 'child5'> 8 <Node 'child2'> 9 <Node 'child6'> 10 <Node 'child10'> 11 <Node 'child3'> 12 <Node 'child8'> 13 <Node 'child9'> 14 oRoot.print_all_1()会打印下面的结果: 15 16 <Node 'root'> 17 <Node 'child1'> 18 <Node 'child2'> 19 <Node 'child3'> 20 <Node 'child4'> 21 <Node 'child5'> 22 <Node 'child6'> 23 <Node 'child8'> 24 <Node 'child9'> 25 <Node 'child7'> 26 <Node 'child10'>
10、简要描述Python的垃圾回收机制(garbage collection)
- Python在内存中存储了每个对象的引用计数(reference count)。如果计数值变成0,那么相应的对象就会小时,分配给该对象的内存就会释放出来用作他用。
- 偶尔也会出现
引用循环
(reference cycle)。垃圾回收器会定时寻找这个循环,并将其回收。举个例子,假设有两个对象o1
和o2
,而且符合o1.x == o2
和o2.x == o1
这两个条件。如果o1
和o2
没有其他代码引用,那么它们就不应该继续存在。但它们的引用计数都是1。 - Python中使用了某些启发式算法(heuristics)来加速垃圾回收。例如,越晚创建的对象更有可能被回收。对象被创建之后,垃圾回收器会分配它们所属的代(generation)。每个对象都会被分配一个代,而被分配更年轻代的对象是优先被处理的。