一:
SPI核心,就是指/drivers/spi/目录下spi.c文件中提供给其他文件的函数,首先看下spi核心的初始化函数spi_init(void)。
1: static int __init spi_init(void)
2: {
3: int status;
4:
5: buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); /* 初始化缓存 */
6: if (!buf) {
7: status = -ENOMEM;
8: goto err0;
9: }
10:
11: status = bus_register(&spi_bus_type); /* 注册spi总线,此步骤之后就会在/sys/bus目录下生成spi子目录 */
12: if (status < 0)
13: goto err1;
14:
15: status = class_register(&spi_master_class);;/* 注册spi类,此步骤之后就会在/sys/class目录下生成spi_master子目录 */
16: if (status < 0)
17: goto err2;
18: return 0;
19:
20: err2:
21: bus_unregister(&spi_bus_type);
22: err1:
23: kfree(buf);
24: buf = NULL;
25: err0:
26: return status;
27: }
1: struct bus_type spi_bus_type = {
2: .name = "spi",
3: .dev_attrs = spi_dev_attrs,
4: .match = spi_match_device,
5: .uevent = spi_uevent,
6: .pm = &spi_pm,
7: };
1: static struct class spi_master_class = {
2: .name = "spi_master",
3: .owner = THIS_MODULE,
4: .dev_release = spi_master_release,
5: };
1: postcore_initcall(spi_init); /* 注册 */
说明:
1) 由postcore_initcall(spi_init);可以看出,此宏在系统初始化时是先于module_init()执行的。
2) 申请的buf空间用于在spi数据传输中。
3) 接下来是总线注册和类注册。
二:
此函数是半双工的形式写then读
1: int spi_write_then_read(struct spi_device *spi,
2: const void *txbuf, unsigned n_tx,
3: void *rxbuf, unsigned n_rx)
4: {
5: static DEFINE_MUTEX(lock);
6:
7: int status;
8: struct spi_message message;
9: struct spi_transfer x[2];
10: u8 *local_buf;
11:
12: /* Use preallocated DMA-safe buffer. We can't avoid copying here,
13: * (as a pure convenience thing), but we can keep heap costs
14: * out of the hot path ...
15: */
16: if ((n_tx + n_rx) > SPI_BUFSIZ)
17: return -EINVAL;
18:
19: spi_message_init(&message);
20: memset(x, 0, sizeof x);
21: if (n_tx) {
22: x[0].len = n_tx;
23: spi_message_add_tail(&x[0], &message);
24: }
25: if (n_rx) {
26: x[1].len = n_rx;
27: spi_message_add_tail(&x[1], &message);
28: }
29:
30: /* ... unless someone else is using the pre-allocated buffer */
31: if (!mutex_trylock(&lock)) {
32: local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
33: if (!local_buf)
34: return -ENOMEM;
35: } else
36: local_buf = buf;
37:
38: memcpy(local_buf, txbuf, n_tx);
39: x[0].tx_buf = local_buf;
40: x[1].rx_buf = local_buf + n_tx;
41:
42: /* do the i/o */
43: status = spi_sync(spi, &message);
44: if (status == 0)
45: memcpy(rxbuf, x[1].rx_buf, n_rx);
46:
47: if (x[0].tx_buf == buf)
48: mutex_unlock(&lock);
49: else
50: kfree(local_buf);
51:
52: return status;
53: }
1: 对master操作的加锁与解锁
2: int spi_bus_lock(struct spi_master *master)
3: {
4: unsigned long flags;
5:
6: mutex_lock(&master->bus_lock_mutex);
7:
8: spin_lock_irqsave(&master->bus_lock_spinlock, flags);
9: master->bus_lock_flag = 1;
10: spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
11:
12: /* mutex remains locked until spi_bus_unlock is called */
13:
14: return 0;
15: }
16: int spi_bus_unlock(struct spi_master *master)
17: {
18: master->bus_lock_flag = 0;
19:
20: mutex_unlock(&master->bus_lock_mutex);
21:
22: return 0;
23: }
同步数据交互
1: int spi_sync(struct spi_device *spi, struct spi_message *message)
2: {
3: return __spi_sync(spi, message, 0);
4: }
5: int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
6: {
7: return __spi_sync(spi, message, 1);
8: }
异步数据交互
1: int spi_async(struct spi_device *spi, struct spi_message *message)
2: {
3: struct spi_master *master = spi->master;
4: int ret;
5: unsigned long flags;
6:
7: spin_lock_irqsave(&master->bus_lock_spinlock, flags);
8:
9: if (master->bus_lock_flag)
10: ret = -EBUSY;
11: else
12: ret = __spi_async(spi, message);
13:
14: spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
15:
16: return ret;
17: }
18:
19: int spi_async_locked(struct spi_device *spi, struct spi_message *message)
20: {
21: struct spi_master *master = spi->master;
22: int ret;
23: unsigned long flags;
24:
25: spin_lock_irqsave(&master->bus_lock_spinlock, flags);
26:
27: ret = __spi_async(spi, message);
28:
29: spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
30:
31: return ret;
32:
33: }
//创建master
1: struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
2: {
3: struct spi_master *master;
4:
5: if (!dev)
6: return NULL;
7:
8: master = kzalloc(size + sizeof *master, GFP_KERNEL);
9: if (!master)
10: return NULL;
11:
12: device_initialize(&master->dev);
13: master->dev.class = &spi_master_class;
14: master->dev.parent = get_device(dev);
15: spi_master_set_devdata(master, &master[1]);
16:
17: return master;
18: }
//spi_register_master
1: int spi_register_master(struct spi_master *master)
2: {
3: static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
4: struct device *dev = master->dev.parent;
5: struct boardinfo *bi;
6: int status = -ENODEV;
7: int dynamic = 0;
8:
9: if (!dev)
10: return -ENODEV;
11:
12: /* even if it's just one always-selected device, there must
13: * be at least one chipselect
14: */
15: if (master->num_chipselect == 0)
16: return -EINVAL;
17:
18: /* convention: dynamically assigned bus IDs count down from the max */
19: if (master->bus_num < 0) {
20: /* FIXME switch to an IDR based scheme, something like
21: * I2C now uses, so we can't run out of "dynamic" IDs
22: */
23: master->bus_num = atomic_dec_return(&dyn_bus_id);
24: dynamic = 1;
25: }
26:
27: spin_lock_init(&master->bus_lock_spinlock);
28: mutex_init(&master->bus_lock_mutex);
29: master->bus_lock_flag = 0;
30:
31: /* register the device, then userspace will see it.
32: * registration fails if the bus ID is in use.
33: */
34: dev_set_name(&master->dev, "spi%u", master->bus_num);
35: status = device_add(&master->dev);
36: if (status < 0)
37: goto done;
38: dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
39: dynamic ? " (dynamic)" : "");
40:
41: mutex_lock(&board_lock);
42: list_add_tail(&master->list, &spi_master_list);
43: list_for_each_entry(bi, &board_list, list)
44: spi_match_master_to_boardinfo(master, &bi->board_info);
45: mutex_unlock(&board_lock);
46:
47: status = 0;
48:
49: /* Register devices from the device tree */
50: of_register_spi_devices(master);
51: done:
52: return status;
53: }
分析以上spi_register_master代码:
1. spi_match_master_to_boardinfo会将master和每个注册进来的device board联系起来