1、最近在写一个分布式服务的框架,对于分布式服务的框架来说,除了远程调用,还要进行服务的治理
当进行促销的时候,所有的资源都用来完成重要的业务,就比如双11的时候,主要的业务就是让用户查询商品,以及购买支付,
此时,金币查询、积分查询等业务就是次要的,因此要对这些服务进行服务的降级,典型的服务降级算法是采用令牌桶算法,
因此在写框架的时候去研究了一下令牌桶算法
2、在实施QOS策略时,可以将用户的数据限制在特定的带宽,当用户的流量超过额定带宽时,超过的带宽将采取其它方式来处理。
要衡量流量是否超过额定的带宽,网络设备并不是采用单纯的数字加减法来决定的,也就是说,比如带宽为100K,而用户发来
的流量为110K,网络设备并不是靠110K减去100K等于10K,就认为用户超过流量10K。网络设备衡量流量是否超过额定带宽,
需要使用令牌桶算法来计算。下面详细介绍令牌桶算法机制:
当网络设备衡量流量是否超过额定带宽时,需要查看令牌桶,而令牌桶中会放置一定数量的令牌,一个令牌允许接口发送
或接收1bit数据(有时是1 Byte数据),当接口通过1bit数据后,同时也要从桶中移除一个令牌。当桶里没有令牌的时候,任何流
量都被视为超过额定带宽,只有当桶中有令牌时,数据才可以通过接口。令牌桶中的令牌不仅仅可以被移除,同样也可以往里添加,
所以为了保证接口随时有数据通过,就必须不停地往桶里加令牌,由此可见,往桶里加令牌的速度,就决定了数据通过接口的速度。
因此,我们通过控制往令牌桶里加令牌的速度从而控制用户流量的带宽。而设置的这个用户传输数据的速率被称为承诺信息速率(CIR),
通常以秒为单位。比如我们设置用户的带宽为1000 bit每秒,只要保证每秒钟往桶里添加1000个令牌即可。
3、举例:
将CIR设置为8000 bit/s,那么就必须每秒将8000个令牌放入桶中,当接口有数据通过时,就从桶中移除相应的令牌,每通过1 bit,
就从桶中移除1个令牌。当桶里没有令牌的时候,任何流量都被视为超出额定带宽,而超出的流量就要采取额外动作。每秒钟往桶里加的令牌
就决定了用户流量的速率,这个速率就是CIR,但是每秒钟需要往桶里加的令牌总数,并不是一次性加完的,一次性加进的令牌数量被称为Burst size(Bc),
如果Bc只是CIR的一半,那么很明显每秒钟就需要往桶里加两次令牌,每次加的数量总是Bc的数量。还有就是加令牌的时间,Time interval(Tc),
Tc表示多久该往桶里加一次令牌,而这个时间并不能手工设置,因为这个时间可以靠CIR和Bc的关系计算得到, Bc/ CIR= Tc。
4、令牌桶算法图例
a. 按特定的速率向令牌桶投放令牌
b. 根据预设的匹配规则先对报文进行分类,不符合匹配规则的报文不需要经过令牌桶的处理,直接发送;
c. 符合匹配规则的报文,则需要令牌桶进行处理。当桶中有足够的令牌则报文可以被继续发送下去,同时令牌桶中的令牌 量按报文的长度做相应的减少;
d. 当令牌桶中的令牌不足时,报文将不能被发送,只有等到桶中生成了新的令牌,报文才可以发送。这就可以限制报文的流量只能是小于等于令牌生成的速度,达到限制流量的目的。
5、Java参考代码:
package com.netease.datastream.util.flowcontrol; import java.io.BufferedWriter; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Random; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.ReentrantLock; /** * <pre> * Created by inter12 on 15-3-18. * </pre> */
public class TokenBucket { // 默认桶大小个数 即最大瞬间流量是64M
private static final int DEFAULT_BUCKET_SIZE = 1024 * 1024 * 64; // 一个桶的单位是1字节
private int everyTokenSize = 1; // 瞬间最大流量
private int maxFlowRate; // 平均流量
private int avgFlowRate; // 队列来缓存桶数量:最大的流量峰值就是 = everyTokenSize*DEFAULT_BUCKET_SIZE 64M = 1 * 1024 * // 1024 * 64
private ArrayBlockingQueue<Byte> tokenQueue = new ArrayBlockingQueue<Byte>( DEFAULT_BUCKET_SIZE); private ScheduledExecutorService scheduledExecutorService = Executors .newSingleThreadScheduledExecutor(); private volatile boolean isStart = false; private ReentrantLock lock = new ReentrantLock(true); private static final byte A_CHAR = 'a'; public TokenBucket() { } public TokenBucket(int maxFlowRate, int avgFlowRate) { this.maxFlowRate = maxFlowRate; this.avgFlowRate = avgFlowRate; } public TokenBucket(int everyTokenSize, int maxFlowRate, int avgFlowRate) { this.everyTokenSize = everyTokenSize; this.maxFlowRate = maxFlowRate; this.avgFlowRate = avgFlowRate; } public void addTokens(Integer tokenNum) { // 若是桶已经满了,就不再家如新的令牌
for (int i = 0; i < tokenNum; i++) { tokenQueue.offer(Byte.valueOf(A_CHAR)); } } public TokenBucket build() { start(); return this; } /** * 获取足够的令牌个数 * * @return
*/
public boolean getTokens(byte[] dataSize) { // Preconditions.checkNotNull(dataSize); // Preconditions.checkArgument(isStart, // "please invoke start method first !");
int needTokenNum = dataSize.length / everyTokenSize + 1;// 传输内容大小对应的桶个数
final ReentrantLock lock = this.lock; lock.lock(); try { boolean result = needTokenNum <= tokenQueue.size(); // 是否存在足够的桶数量
if (!result) { return false; } int tokenCount = 0; for (int i = 0; i < needTokenNum; i++) { Byte poll = tokenQueue.poll(); if (poll != null) { tokenCount++; } } return tokenCount == needTokenNum; } finally { lock.unlock(); } } public void start() { // 初始化桶队列大小
if (maxFlowRate != 0) { tokenQueue = new ArrayBlockingQueue<Byte>(maxFlowRate); } // 初始化令牌生产者
TokenProducer tokenProducer = new TokenProducer(avgFlowRate, this); scheduledExecutorService.scheduleAtFixedRate(tokenProducer, 0, 1, TimeUnit.SECONDS); isStart = true; } public void stop() { isStart = false; scheduledExecutorService.shutdown(); } public boolean isStarted() { return isStart; } class TokenProducer implements Runnable { private int avgFlowRate; private TokenBucket tokenBucket; public TokenProducer(int avgFlowRate, TokenBucket tokenBucket) { this.avgFlowRate = avgFlowRate; this.tokenBucket = tokenBucket; } @Override public void run() { tokenBucket.addTokens(avgFlowRate); } } public static TokenBucket newBuilder() { return new TokenBucket(); } public TokenBucket everyTokenSize(int everyTokenSize) { this.everyTokenSize = everyTokenSize; return this; } public TokenBucket maxFlowRate(int maxFlowRate) { this.maxFlowRate = maxFlowRate; return this; } public TokenBucket avgFlowRate(int avgFlowRate) { this.avgFlowRate = avgFlowRate; return this; } private String stringCopy(String data, int copyNum) { StringBuilder sbuilder = new StringBuilder(data.length() * copyNum); for (int i = 0; i < copyNum; i++) { sbuilder.append(data); } return sbuilder.toString(); } public static void main(String[] args) throws IOException, InterruptedException { tokenTest(); } private static void arrayTest() { ArrayBlockingQueue<Integer> tokenQueue = new ArrayBlockingQueue<Integer>( 10); tokenQueue.offer(1); tokenQueue.offer(1); tokenQueue.offer(1); System.out.println(tokenQueue.size()); System.out.println(tokenQueue.remainingCapacity()); } private static void tokenTest() throws InterruptedException, IOException { TokenBucket tokenBucket = TokenBucket.newBuilder().avgFlowRate(512) .maxFlowRate(1024).build(); BufferedWriter bufferedWriter = new BufferedWriter( new OutputStreamWriter(new FileOutputStream("D:/ds_test"))); String data = "xxxx";// 四个字节
for (int i = 1; i <= 1000; i++) { Random random = new Random(); int i1 = random.nextInt(100); boolean tokens = tokenBucket.getTokens(tokenBucket.stringCopy(data, i1).getBytes()); TimeUnit.MILLISECONDS.sleep(100); if (tokens) { bufferedWriter.write("token pass --- index:" + i1); System.out.println("token pass --- index:" + i1); } else { bufferedWriter.write("token rejuect --- index" + i1); System.out.println("token rejuect --- index" + i1); } bufferedWriter.newLine(); bufferedWriter.flush(); } bufferedWriter.close(); } }