局部加权回归


局部加权回归(Locally Weighted Regression, LWR)

局部加权回归使一种非参数方法(Non-parametric)。在每次预测新样本时会重新训练临近的数据得到新参数值。意思是每次预测数据需要依赖训练训练集,所以每次估计的参数值是不确定的。

局部加权回归优点:

  1. 需要预测的数据仅与到训练数据的距离有关,距离越近,关系越大,反之越小;
  2. 可以有效避免欠拟合,减小了较远数据的干扰,仅与较近的数据有关。

局部加权回归原理

图1 局部加权回归原理

对于一般训练集:

    

    

参数系统为:

    

线性模型为:

    

线性回归损失函数J(θ)

    

局部加权回归的损失函数J(θ)

    

    

其中,τ为波长函数[1],权重之所以采取指数形式是因为这个形式最常见。

[1] 机器学习。

原创文章,转载请注明出处!


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM