pandas 透视表 pivot_table




The function pandas.pivot_table can be used to create spreadsheet-style pivot tables.

It takes a number of arguments

    data: A DataFrame object
    values: a column or a list of columns to aggregate
    index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
    columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
    aggfunc: function to use for aggregation, defaulting to numpy.mean

    

import numpy as np
import pandas as pd
import datetime

df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
                   'B': ['A', 'B', 'C'] * 8,
                   'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                   'D': np.random.randn(24),
                   'E': np.random.randn(24),
                   'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                        [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
                        

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values='D', aggfunc=np.sum)

pd.pivot_table(df, index=['C'], columns=['A', 'B'], values='D', aggfunc='sum')

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=np.sum)

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc=[np.sum])

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':np.sum})

pd.pivot_table(df, index=['A', 'B'], columns=['C'], values=['D','E'], aggfunc={'D':len,'E':[np.sum, np.mean]})

pd.pivot_table(df, index=pd.Grouper(freq='M', key='F'), columns='C', values='D', aggfunc=np.sum) # 有点类似 resample

 



 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM