python的collection系列-counter


一、计数器(counter)

Counter是对字典类型的补充,用于追踪值的出现次数。

具备字典的所有功能 + 自己的功能。

1 import collections
2 aa = collections.Counter("sdfdsgsdf;sdfssfd")    #把所有元素出现的次数统计下来了
3 print(aa)
4 
5 输出结果:
6 Counter({'s': 6, 'd': 5, 'f': 4, ';': 1, 'g': 1})

部分源码分析:

 1 def most_common(self, n=None):  2         '''List the n most common elements and their counts from the most  3  common to the least. If n is None, then list all element counts.  4 
 5  >>> Counter('abcdeabcdabcaba').most_common(3)  6  [('a', 5), ('b', 4), ('c', 3)]  7 
 8         '''
 9         # Emulate Bag.sortedByCount from Smalltalk
10         if n is None: 11             return sorted(self.items(), key=_itemgetter(1), reverse=True) 12         return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
1 #获取元素出现次数多的几个
2 bb = aa.most_common(3)     #取元素次数最多的前3个
3 print(bb)
4 
5 #执行结果:
6 [('s', 6), ('d', 5), ('f', 4)]
 1 def elements(self):  2         '''Iterator over elements repeating each as many times as its count.  3 
 4  >>> c = Counter('ABCABC')  5  >>> sorted(c.elements())  6  ['A', 'A', 'B', 'B', 'C', 'C']  7 
 8  # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1  9  >>> prime_factors = Counter({2: 2, 3: 3, 17: 1}) 10  >>> product = 1 11  >>> for factor in prime_factors.elements(): # loop over factors 12  ... product *= factor # and multiply them 13  >>> product 14  1836 15 
16  Note, if an element's count has been set to zero or is a negative 17  number, elements() will ignore it. 18 
19         '''
20         # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
21         return _chain.from_iterable(_starmap(_repeat, self.items())) 22 
23     # Override dict methods where necessary
 1 #其他输出方式
 2 for item in aa.elements():   #迭代输出元素(同一元素出现几次,就连续输出该元素几次),无序
 3     print(item)
 4 
 5 for k,v in aa.items():     #把所有元素拿出来,再统计该元素出现次数
 6     print(k,v)
 7 
 8 #执行结果:
 9 ;
10 s
11 s
12 s
13 s
14 s
15 s
16 f
17 f
18 f
19 f
20 d
21 d
22 d
23 d
24 d
25 g
26 ; 1
27 s 6
28 f 4
29 d 5
30 g 1

 counter和elements的区别:elements处理的是原生的值;而counter处理的是已经处理完的数据

1 def update(*args, **kwds): 2         '''Like dict.update() but add counts instead of replacing them. 3 
4  Source can be an iterable, a dictionary, or another Counter instance.
 1 #更新计数器,
 2 import collections
 3 aa = collections.Counter(["11","22","33","22"])    #把所有元素出现的次数统计下来了
 4 print(aa)
 5 aa.update(["ggg","11","11"])
 6 print(aa)
 7 
 8 #执行结果:
 9 Counter({'22': 2, '33': 1, '11': 1})
10 Counter({'11': 3, '22': 2, 'ggg': 1, '33': 1})
1 def subtract(*args, **kwds): 2         '''Like dict.update() but subtracts counts instead of replacing them. 3  Counts can be reduced below zero. Both the inputs and outputs are 4  allowed to contain zero and negative counts. 5 
6  Source can be an iterable, a dictionary, or another Counter instance.
 1 #减少元素
 2 import collections
 3 aa = collections.Counter(["11","22","33","22"])    #把所有元素出现的次数统计下来了
 4 print(aa)
 5 aa.subtract(["ggg","11","11"])   #如果不存在,也减
 6 print(aa)
 7 
 8 #执行结果:
 9 Counter({'22': 2, '11': 1, '33': 1})
10 Counter({'22': 2, '33': 1, 'ggg': -1, '11': -1})

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM