协方差矩阵公式推导


     已知n维随机变量\(\vec{X}=(X_{1},X_{2},...,X_{n})\)的协方差矩阵为\(C = \begin{bmatrix}c_{11} & c_{12} & ... & c_{1n} \\c_{21} & c_{22} & ... & c_{2n} \\. & .& &.\\. & .& &.\\. & .& &.\\c_{n1} & c_{n2} &...&c_{nn}\end{bmatrix} \),其中\(c_{ij} = E\big\{[X_{i}-E(X_{i})][X_{j}-E(X_{j})]\big\}\)。那么,能否将协方差矩阵写成向量形式呢?即写成和一维随机向量的方差公式类似的形式:\(D(X) = E(X-E(X))^{2} \)。

     我们来证明一下,设\(X_{i}\)的样本量为m,由协方差矩阵的公式,可知:

\(C = \frac{1}{m}\begin{bmatrix} (X_{1}-E(X_{1}))^{T}(X_{1}-E(X_{1})) & ... & (X_{1}-E(X_{1}))^{T}(X_{n}-E(X_{n})) \\ (X_{2}-E(X_{2}))^{T}(X_{1}-E(X_{1})) & ... & (X_{2}-E(X_{2}))^{T}(X_{n}-E(X_{n})) \\. &. & .\\. &. & .\\. &. & .\\ (X_{n}-E(X_{n}))^{T}(X_{1}-E(X_{1})) & ... & (X_{n}-E(X_{n}))^{T}(X_{n}-E(X_{n})) \end{bmatrix} \)

\(   = \frac{1}{m}\begin{bmatrix} (X_{1}-E(X_{1}))^{T} \\ (X_{2}-E(X_{2}))^{T} \\ .\\. \\. \\ (X_{n}-E(X_{n}))^{T} \end{bmatrix} \begin{bmatrix} X_{1}-E(X_{1}), & X_{2}-E(X_{2}), &...,& X_{n}-E(X_{n}) \end{bmatrix} \)

\(   = \frac{1}{m}(\vec{X}-E(\vec{X}))^{T}(\vec{X}-E(\vec{X})) \)

\(   = E((\vec{X}-E(\vec{X}))^{T}(\vec{X}-E(\vec{X}))) \)

     推导结果与一维随机向量的方差公式是一致的,所以,我们的猜测是正确的,证毕。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM