redis的字典定义和实现在dict.h和dict.c文件中。
1.字典结构
typedef struct dict { dictType *type; //定义了字典需要的函数 void *privdata; dictht ht[2]; //哈希表结构 int rehashidx; //下一个需要扩容的字典编号,若rehashidx == -1 则不会进行重新散列。 int iterators; //当前正在运行的迭代器数目 } dict;
其中涉及到数据结构,如下所示:
1.1 字典类型,包含了一系列字典所需要用到的函数
typedef struct dictType { unsigned int (*hashFunction)(const void *key); //hash函数 void *(*keyDup)(void *privdata, const void *key); //键复制 void *(*valDup)(void *privdata, const void *obj); //值复制 int (*keyCompare)(void *privdata, const void *key1, const void *key2); //key比较 void (*keyDestructor)(void *privdata, void *key); //key析构 void (*valDestructor)(void *privdata, void *obj); //value析构 } dictType;
1.2 哈希表结构,每个字典有两个哈希表。当哈希表扩容时实现散列。
typedef struct dictht { dictEntry **table; unsigned long size; //桶的大小,是2的指数 unsigned long sizemask; //sizemask=size-1,方便取模(i%sizemask 开放链地址法处理hash冲突)。 unsigned long used; //哈希表中的记录数 } dictht;
1.3 dictEntry为字典的条目,其定义如下:
typedef struct dictEntry { void *key; // 键 union { //值的共用体 void *val; uint64_t u64; int64_t s64; } v; struct dictEntry *next; } dictEntry;
2. 字典的遍历--字典遍历器
typedef struct dictIterator { dict *d; int table, index, safe; dictEntry *entry, *nextEntry; long long fingerprint; /* unsafe iterator fingerprint for misuse detection */ } dictIterator;
注意:当safe=1时,该遍历器是安全的,即字典可以在遍历的同时执行dictAdd, dictFind, 和别的函数。否则遍历器是不安全的,遍历时只能执行dictNext()。
迭代器提供了遍历字典中所有元素的方法,通过dicGetIterator()获得迭代器后,使用dictNext(dictIterator *)获得下一个元素。遍历的过程,先从ht[0]开始,依次从第一个桶table[0]开始遍历桶中的元素,然后遍历table[1],'*** ,table[size],若正在扩容,则会继续遍历ht[1]中的桶。遍历桶中元素时,依次访问链表中的每一个元素。
3.宏定义函数
#define dictFreeVal(d, entry) \ if ((d)->type->valDestructor) \ (d)->type->valDestructor((d)->privdata, (entry)->v.val) #define dictSetVal(d, entry, _val_) do { \ if ((d)->type->valDup) \ entry->v.val = (d)->type->valDup((d)->privdata, _val_); \ else \ entry->v.val = (_val_); \ } while(0) #define dictSetSignedIntegerVal(entry, _val_) \ do { entry->v.s64 = _val_; } while(0) #define dictSetUnsignedIntegerVal(entry, _val_) \ do { entry->v.u64 = _val_; } while(0) #define dictFreeKey(d, entry) \ if ((d)->type->keyDestructor) \ (d)->type->keyDestructor((d)->privdata, (entry)->key) #define dictSetKey(d, entry, _key_) do { \ if ((d)->type->keyDup) \ entry->key = (d)->type->keyDup((d)->privdata, _key_); \ else \ entry->key = (_key_); \ } while(0) #define dictCompareKeys(d, key1, key2) \ (((d)->type->keyCompare) ? \ (d)->type->keyCompare((d)->privdata, key1, key2) : \ (key1) == (key2)) #define dictHashKey(d, key) (d)->type->hashFunction(key) #define dictGetKey(he) ((he)->key) #define dictGetVal(he) ((he)->v.val) #define dictGetSignedIntegerVal(he) ((he)->v.s64) #define dictGetUnsignedIntegerVal(he) ((he)->v.u64) #define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size) #define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used) #define dictIsRehashing(ht) ((ht)->rehashidx != -1)
4. 字典提供的api,有字典的创建,增加、删除、修改记录,还有迭代器(前面已经介绍)和自动扩容(下面介绍)。
dict *dictCreate(dictType *type, void *privDataPtr); int dictExpand(dict *d, unsigned long size); int dictAdd(dict *d, void *key, void *val); dictEntry *dictAddRaw(dict *d, void *key); int dictReplace(dict *d, void *key, void *val); dictEntry *dictReplaceRaw(dict *d, void *key); int dictDelete(dict *d, const void *key); int dictDeleteNoFree(dict *d, const void *key); void dictRelease(dict *d); dictEntry * dictFind(dict *d, const void *key); void *dictFetchValue(dict *d, const void *key); int dictResize(dict *d); dictIterator *dictGetIterator(dict *d); dictIterator *dictGetSafeIterator(dict *d); dictEntry *dictNext(dictIterator *iter); void dictReleaseIterator(dictIterator *iter); dictEntry *dictGetRandomKey(dict *d); void dictPrintStats(dict *d); unsigned int dictGenHashFunction(const void *key, int len); unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len); void dictEmpty(dict *d); void dictEnableResize(void); void dictDisableResize(void); int dictRehash(dict *d, int n); int dictRehashMilliseconds(dict *d, int ms); void dictSetHashFunctionSeed(unsigned int initval); unsigned int dictGetHashFunctionSeed(void);
5.外部定义变量
/* 哈希表类型*/ extern dictType dictTypeHeapStringCopyKey; extern dictType dictTypeHeapStrings; extern dictType dictTypeHeapStringCopyKeyValue;
6. 自动扩容
Redis使用标识dict_can_resize来记录字典是否可以扩容,可以使用dictEnableResize()方法和dictDisableResize()来改变此标识。使用dictResize()来扩容,但需要首先判断是否允许扩容及是否正在扩容。若可以扩容,则调用dictExpand()扩容,然后调用dictRehashMilliseconds()启动扩容,并指定扩容过程中记录的copy速度。请看程序:
6.1 dictResize()
/* Resize the table to the minimal size that contains all the elements, * but with the invariant of a USED/BUCKETS ratio near to <= 1 */ int dictResize(dict *d) { int minimal; if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; minimal = d->ht[0].used; if (minimal < DICT_HT_INITIAL_SIZE) minimal = DICT_HT_INITIAL_SIZE; return dictExpand(d, minimal); }
6.2 dictExpand()
/* Expand or create the hash table */ int dictExpand(dict *d, unsigned long size) { dictht n; /* the new hash table */ unsigned long realsize = _dictNextPower(size); /* the size is invalid if it is smaller than the number of * elements already inside the hash table */ if (dictIsRehashing(d) || d->ht[0].used > size) return DICT_ERR; /* Allocate the new hash table and initialize all pointers to NULL */ n.size = realsize; n.sizemask = realsize-1; n.table = zcalloc(realsize*sizeof(dictEntry*)); n.used = 0; /* Is this the first initialization? If so it's not really a rehashing * we just set the first hash table so that it can accept keys. */ if (d->ht[0].table == NULL) { d->ht[0] = n; return DICT_OK; } /* Prepare a second hash table for incremental rehashing */ d->ht[1] = n; d->rehashidx = 0; return DICT_OK; }
6.3
/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ int dictRehashMilliseconds(dict *d, int ms) { long long start = timeInMilliseconds(); int rehashes = 0; while(dictRehash(d,100)) { rehashes += 100; if (timeInMilliseconds()-start > ms) break; } return rehashes; }