Android性能测试工具--Oprofile


转http://blog.csdn.net/louieuser/article/details/6152175
Android应用的性能如何测试?JAVA层面可以用TraceView,可是用NDK开发出来的是so,TraceView跟踪不了怎么办?问了Google大神,答案是OProfile!
Oprofile 是Linux系统下一个低开销的系统全局的性能监视工具,利用处理器上所包含的专用的性能监视硬件(若没有性能监视硬件则使用一个基于计时器的代用品)来收集与性能相关的数据样品。它获得关于内核以及系统上的可执行文件的信息,例如内存是何时被引用的;L2缓存请求的数量;收到的硬件中断数量等。
Oprofile的特点如下:
l         无需重新编译源代码,如果不进行源代码及分析,连调试信息(-g option to gcc)也不是必须的。
l         只在内核中插入一个模块。
l         可以分析运行于系统之上的所有代码(禁用中断的代码除外)
l         系统的额外开销小,Oprofile会增加1%-8%的系统开销(取决于采样频率)
l         兼容所有2.2,2.4,2.6内核,可以运行在SMP系统之上
l         支持主流CPU架构,包括X86、arm、AVR32、mips、powerpc等
Oprofile要想跑在Andorid上,要满足下面的条件:
1.内核要支持
2.要将Oprofile移植到Arm平台上
 
下面是移植的全过程:
一、Oprofile移植
用到的交叉编译工具如下:
arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
用到的库如下:
popt-1.14.tar.gz 
binutils-2.21.tar.gz
oprofile-0.9.6.tar.gz
 
$ tar xvfz arm-2010.09-50-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 -C ~/
修改~/.bashrc,添加
export PATH=${PATH}:/home/louieli/arm-2010.09/bin
 
$ tar zxvf popt-1.14.tar.gz 
$ cd popt-1.14
$ ac_cv_va_copy=yes ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/popt
$ make
$ make install
 
$ tar zxvf binutils-2.21.tar.gz
$ cd binutils-2.21/
$ ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/binutils --enable-shared
$ make LDFLAGS="-all-static"
可能会出现 cc1: warnings being treated as errors,找到出错文件的Makefile文件,将-Werror去掉
$ make install
 
$ tar zxvf oprofile-0.9.6.tar.gz
$ cd oprofile-0.9.6/
$ ./configure --with-kernel-support --host=arm-none-linux-gnueabi --prefix=/home/louieli/work/oprofile/ --with-extra-libs=/home/louieli/work/popt/lib/ --with-extra-includes=/home/louieli/work/popt/include/ --with-binutils=/home/louieli/work/binutils
$ make LDFLAGS="-all-static -L/home/louieli/work/binutils/lib -Xlinker -R -Xlinker /home/louieli/work/binutils/lib  -L/home/louieli/work/popt/lib/"
$ make install
用file 命令查看,我们需要的oprofile文件都已经变成可以在android上跑的静态链接文件了
install.sh: Bourne-Again shell script text executable
opannotate: ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
oparchive:  ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opcontrol:  a /system/bin/sh script text executable
opgprof:    ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
ophelp:     ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opimport:   ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opjitconv:  ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
opreport:   ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
oprofiled:  ELF 32-bit LSB executable, ARM, version 1 (SYSV), statically linked, for GNU/Linux 2.6.16, not stripped
 
 
二、编译linux内核映像
a)准备交叉编译工具链
android代码树中有一个prebuilt项目,包含了我们编译内核所需的交叉编译工具。
 
b)设定环境变量
$ emacs ~/.bashrc
增加如下两行:
export PATH=$PATH:~/android/prebuilt/linux-x86/toolchain/arm-eabi-4.4.0/bin
export ARCH=arm
保存后,同步变化:
$ source ~/.bashrc
 
c)获得合适的内核源代码
$ cd ~/android
获得内核源代码仓库
$ git clone git://android.git.kernel.org/kernel/common.git kernel
$ cd kernel
$ git branch
显示
* android-2.6.27
说明你现在在android-2.6.27这个分支上,也是kernel/common.git的默认主分支。
显示所有head分支:
$ git branch -a
显示
* android-2.6.27
remotes/origin/HEAD -> origin/android-2.6.27
remotes/origin/android-2.6.25
remotes/origin/android-2.6.27
remotes/origin/android-2.6.29
remotes/origin/android-goldfish-2.6.27
remotes/origin/android-goldfish-2.6.29
我们选取最新的android-goldfish-2.6.29,其中goldfish是android的模拟器模拟的CPU。
$ git checkout -b android-goldfish-2.6.29 origin/android-goldfish-2.6.29
$ git branch
显示
android-2.6.27
* android-goldfish-2.6.29
我们已经工作在android-goldfish-2.6.29分支上了。
 
d)设定交叉编译参数
打开kernel目录下的Makefile文件,把CROSS_COMPILE指向刚才下载的prebuilt中的arm-eabi编译器
CROSS_COMPILE ?= arm-eabi-
LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,/
$(call ld-option, -Wl$(comma)–build-id,))
这一行注释掉,并且添加一个空的LDFLAGS_BUILD_ID定义,如下:
LDFLAGS_BUILD_ID =
 
e)编译内核映像
$ cd ~/android/kernel
$ make goldfish_defconfig
$ make menuconfig
修改内核配置如下
General setup --->
[*] Profiling support (EXPERIMENTAL)
[ ] Activate markers
[*] OProfile system profiling (EXPERIMENTAL) 
这是把OProfile直接编进内核,也可以选择[M] OProfile system profiling (EXPERIMENTAL)会在arch/arm/oprofile文件夹下生成oprofile.ko,oprofile.ko需要用insmod载入。
$make 
 
f)测试生成的内核映像
$ emulator -avd myavd -kernel ~/android/kernel/arch/arm/boot/zImage
 
三、Oprofile在android模拟器中的使用
1.先看一下opcontrol的参数
# opcontrol
opcontrol: usage:
   -l/--list-events list event types and unit masks
   -?/--help        this message
   -v/--version     show version
   --init           loads the oprofile module and oprofilefs
   --setup          give setup arguments (may be omitted)
   --status         show configuration
   --start-daemon   start daemon without starting profiling
   -s/--start       start data collection
   -d/--dump        flush the collected profiling data
   -t/--stop        stop data collection
   -h/--shutdown    stop data collection and kill daemon
   -V/--verbose[=all,sfile,arcs,samples,module,misc,ext]
                    be verbose in the daemon log
   --reset          clears out data from current session
   --save=name      save data from current session to session_name
   --deinit         unload the oprofile module and oprofilefs
   -e/--event=eventspec
      Choose an event. May be specified multiple times. Of the form
      "default" or "name:count:unitmask:kernel:user", where :
      name:     event name, e.g. CPU_CLK_UNHALTED or RTC_INTERRUPTS
      count:    reset counter value e.g. 100000
      unitmask: hardware unit mask e.g. 0x0f
      kernel:   whether to profile kernel: 0 or 1
      user:     whether to profile userspace: 0 or 1
   -p/--separate=type,[types]
       Separate profiles as follows :
       none:     no profile separation
       library:  separate shared library profiles per-application
       kernel:   same as library, plus kernel profiles
       thread:   per-thread/process profiles
       cpu:      per CPU profiles
       all:      all of the above
   -c/--callgraph=#depth         enable callgraph sample collection with a maximum depth.
                                 Use 0 to disable callgraph profiling.
   --session-dir=dir             place sample database in dir instead of
                                 default location (/var/lib/oprofile)
   -i/--image=name[,names]       list of binaries to profile (default is "all")
   --vmlinux=file                vmlinux kernel image
   --no-vmlinux                  no kernel image (vmlinux) available
   --kernel-range=start,end      kernel range vma address in hexadecimal
   --buffer-size=num             kernel buffer size in sample units
   --buffer-watershed            kernel buffer watershed in sample units (2.6 only=
   --cpu-buffer-size=num         per-cpu buffer size in units (2.6 only)
   --note-table-size             kernel notes buffer size in notes units (2.4 only)
 
   --xen                         Xen image (for Xen only)
   --active-domains=<list>       List of domains in profiling session (for Xen only)
                                 (list contains domain ids separated by commas)
 
 
 
2.使用方法
将我们之前编译好的oprofile和busybox装入模拟器
执行oprofile目录中的install.sh 将oprofile装入模拟器
adb push busybox /data/busybox
$adb shell  //进入模拟器shell
#chmod 777 /data/busybox
# /data/busybox --install /data/busybox
#export PATH=/data/busybox:$PATH:/data/oprofile
# mount -o remount rw /
# mount -o rw,remount -t yaffs2 /dev/mtdblock3 /system
# touch /etc/mtab
# echo nodev /dev/oprofile oprofilefs rw 0 0>/etc/mtab
# mkdir /dev/oprofile
# mount -t oprofilefs nodev /dev/oprofile    //这一句很重要,没有这一句会出现下面的错误
 
# opcontrol --init      
cat: can't open '/dev/oprofile/cpu_type': No such file or directory
Unable to open cpu_type file for reading
Make sure you have done opcontrol --init
cpu_type 'unset' is not valid
you should upgrade oprofile or force the use of timer mode
 
# opcontrol --init     //初始化,只需运行一次
# opcontrol --setup --callgraph=2 --session-dir=/data/first --no-vmlinux
Using 2.6+ OProfile kernel interface.
Using log file /data/first/samples/oprofiled.log
Daemon started.
Profiler running.
# opcontrol --status
Daemon running: pid 637
Separate options: none
vmlinux file: none
Image filter: none
Call-graph depth: 2
# opcontrol --start     //启动profiler
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.
# /data/test/test     //运行我们的程序 ( 我的测试程序通过这条指令编译arm-none-linux-gnueabi-gcc -g -o test test.c -static -fno-omit-frame-pointer)
in c
in a
in b
in a
in c
in b
in a
in a
# opcontrol --dump   //收集采样数据
# opcontrol --stop //停止profiler
Stopping profiling.
#opreport --session-dir=/data/first -l /data/test/test       //查看报告
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt
samples  %        symbol name
11291    79.9589  a
1129      7.9952  b
853       6.0406  main
848       6.0052  c
现在我们就可以根据oprofile的输出对我们的程序进行优化了。
如果有哪位同学也想试一把的话,一定要用linux。这种移植环境很重要,我之前就在测试机(win7+cygwin)上浪费了很多时间。这里有打包好的工具,大家可以下载。其中kernel-qemu就是我们之前编译好的内核,替换掉Android SDK中的kernel-qemu就行了。祝各位好运!


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2024 CODEPRJ.COM