原文:如何增加深度學習模型的泛化能力(L1/L2正則化,dropout,數據增強等等)

這是專欄 AI初識境 的第 篇文章。所謂初識,就是對相關技術有基本了解,掌握了基本的使用方法。 今天來說說深度學習中的generalization問題,也就是泛化和正則化有關的內容。 作者 amp 編輯 言有三 什么是generalization 機器學習方法訓練出來一個模型,希望它不僅僅是對於已知的數據 訓練集 性能表現良好,對於未知的數據 測試集 也應該表現良好,也就是具有良好的general ...

2022-04-09 18:08 0 647 推薦指數:

查看詳情

深度學習正則化--L0、L1L2正則化

概念 L0正則化的值是模型參數中非零參數的個數。 L1正則化表示各個參數絕對值之和。 L2正則化標識各個參數的平方的和的開方值。 先討論幾個問題: 1)實現參數的稀疏有什么好處嗎? 一個好處是可以簡化模型,避免過擬合。因為一個模型中真正重要的參數可能並不多,如果考慮所有的參數 ...

Tue Apr 03 17:58:00 CST 2018 0 2593
深度學習L1正則化L2正則化

在機器學習中,我們非常關心模型的預測能力,即模型在新數據上的表現,而不希望過擬合現象的的發生,我們通常使用正則化(regularization)技術來防止過擬合情況。正則化是機器學習中通過顯式的控制模型復雜度來避免模型過擬合、確保泛化能力的一種有效方式。如果將模型原始的假設空間比作“天空 ...

Thu Feb 22 01:44:00 CST 2018 0 9583
正則化方法:L1L2 regularization、數據集擴增、dropout

正則化方法:L1L2 regularization 本文是《Neural networks and deep learning》概覽 中第三章的一部分,講機器學習/深度學習算法中常用的正則化方法。(本文會不斷補充) 正則化方法:防止過擬合,提高泛化能力 ...

Fri Mar 16 18:25:00 CST 2018 0 3833
正則化方法:L1L2 regularization、數據集擴增、dropout

本文是《Neural networks and deep learning》概覽 中第三章的一部分。講機器學習/深度學習算法中經常使用的正則化方法。(本文會不斷補充) 正則化方法:防止過擬合,提高泛化能力 在訓練數據不夠多時,或者overtraining時 ...

Sat Mar 12 22:04:00 CST 2016 0 19041
正則化方法:L1L2 regularization、數據集擴增、dropout

正則化方法:L1L2 regularization、數據集擴增、dropout 本文是《Neural networks and deep learning》概覽 中第三章的一部分,講機器學習/深度學習算法中常用的正則化方法。(本文會不斷補充) 正則化方法:防止過擬合,提高泛化能力 ...

Wed May 20 04:36:00 CST 2015 0 2815
學習筆記163—理解模型正則化L1正則L2正則(理論+代碼)

理解模型正則化L1正則L2正則(理論+代碼) 0 前言 我們已經知道了模型誤差 = 偏差 + 方差 + 不可避免的誤差,且在機器學習領域中最重要就是解決過擬合的問題,也就是降低模型的方差。在上一篇文章《ML/DL重要基礎概念:偏差和方差》已經列出了如下方 ...

Fri Jul 03 06:21:00 CST 2020 0 855
L1正則化L2正則化

  L1L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化   對模型參數的L2正則項為      即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
深度學習——正則化L1\L2)(還沒搞明白

什么是正則化?在機器學習中,我們非常關心模型的預測能力,即模型在新數據上的表現,而不希望過擬合現象的的發生,我們通常使用正則化(regularization)技術來防止過擬合情況。正則化是機器學習中通過顯式的控制模型復雜度來避免模型過擬合、確保泛化能力的一種有效方式。如果將模型原始的假設空間比作 ...

Wed Nov 03 19:08:00 CST 2021 0 848
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM