原文:TensorFlow.NET機器學習入門【7】采用卷積神經網絡(CNN)處理Fashion-MNIST

本文將介紹如何采用卷積神經網絡 CNN 來處理Fashion MNIST數據集。 程序流程如下: 准備樣本數據 構建卷積神經網絡模型 網絡學習 訓練 消費 測試 除了網絡模型的構建,其它步驟都和前面介紹的普通神經網絡的處理完全一致,本文就不重復介紹了,重點講一下模型的構建。 先看代碼: keras.layers.Conv D方法創建一個卷積層 keras.layers.MaxPooling D方法 ...

2021-12-30 13:06 7 1608 推薦指數:

查看詳情

TensorFlow.NET機器學習入門【4】采用神經網絡處理分類問題

上一篇文章我們介紹了通過神經網絡處理一個非線性回歸的問題,這次我們將采用神經網絡處理一個多元分類的問題。 這次我們解決這樣一個問題:輸入一個人的身高和體重的數據,程序判斷出這個人的身材狀況,一共三個類別:偏瘦、正常、偏胖。 處理流程如下: 1、收集數據 2、構建神經網絡 3、訓練 ...

Mon Dec 27 19:36:00 CST 2021 0 1539
TensorFlow.NET機器學習入門【3】采用神經網絡實現非線性回歸

上一篇文章我們介紹的線性模型的求解,但有很多模型是非線性的,比如: 這里表示有兩個輸入,一個輸出。 現在我們已經不能采用y=ax+b的形式去定義一個函數了,我們只能知道輸入變量的數量,但不知道某個變量存在幾次方的分量,所以我們采用一個神經網絡去定義一個函數。 我們假設 ...

Fri Dec 24 19:39:00 CST 2021 10 1937
tensorflow學習筆記五:mnist實例--卷積神經網絡(CNN

mnist卷積神經網絡例子和上一篇博文中的神經網絡例子大部分是相同的。但是CNN層數要多一些,網絡模型需要自己來構建。 程序比較復雜,我就分成幾個部分來敘述。 首先,下載並加載數據: 定義四個函數,分別用於初始化權值W,初始化偏置項b, 構建卷積層和構建池化層 ...

Fri Sep 09 00:31:00 CST 2016 11 57627
機器學習基礎】卷積神經網絡CNN)基礎

最近幾天陸續補充了一些“線性回歸”部分內容,這節繼續機器學習基礎部分,這節主要對CNN的基礎進行整理,僅限於基礎原理的了解,更復雜的內容和實踐放在以后再進行總結。 卷積神經網絡的基本原理   前面對全連接神經網絡和深度學習進行了簡要的介紹,這一節主要對卷積神經網絡的基本原理進行學習和總結 ...

Thu Nov 25 08:02:00 CST 2021 0 888
機器學習Tensorflow(4)——卷積神經網絡tensorflow實現

1.標准卷積神經網絡 標准的卷積神經網絡由輸入層、卷積層(convolutional layer)、下采樣層(downsampling layer)、全連接層(fully—connected layer)和輸出層構成。 卷積層也稱為檢測層 下采樣層也稱為池化層(pooling ...

Thu Dec 27 19:12:00 CST 2018 3 544
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM