在設計Machine Learning系統時,我們很難從系統運行之前就得知系統的“復雜程度”。在線性回歸中,我們可以將此問題等同為:使用幾維參數,是否需要涉及更復雜的多項式,以及本文的一個新概念—Regularization Parameter。本文,將討論Underfit,Overfit基本理論 ...
定義 過擬合:一個假設在訓練數據上能夠獲得比其他假設更好的擬合, 但是在測試數據集上卻不能很好地擬合數據,此時認為這個假設出現了過擬合的現象。 模型過於復雜 欠擬合:一個假設在訓練數據上不能獲得更好的擬合,並且在測試數據集上也不能很好地擬合數據,此時認為這個假設出現了欠擬合的現象。 模型過於簡單 那么是什么原因導致模型復雜 線性回歸進行訓練學習的時候變成模型會變得復雜,這里就對應前面再說的線性回 ...
2021-11-04 21:47 0 1477 推薦指數:
在設計Machine Learning系統時,我們很難從系統運行之前就得知系統的“復雜程度”。在線性回歸中,我們可以將此問題等同為:使用幾維參數,是否需要涉及更復雜的多項式,以及本文的一個新概念—Regularization Parameter。本文,將討論Underfit,Overfit基本理論 ...
。 解決方法: 1、添加其它的特征項,有時候模型欠擬合是數據的特征項不夠造成的,可以添加其 ...
解決欠擬合(高偏差)的方法 1.模型復雜化 對同一個算法復雜化。例如回歸模型添加更多的高次項,增加決策樹的深度,增加神經網絡的隱藏層數和隱藏單元數等 棄用原來的算法,使用一個更加復雜的算法或模型。例如用神經網絡來替代線性回歸,用隨機森林來代替決策樹等 2.增加更多的特征,使 ...
在我們機器學習或者訓練深度神經網絡的時候經常會出現欠擬合和過擬合這兩個問題,但是,一開始我們的模型往往是欠擬合的,也正是因為如此才有了優化的空間,我們需要不斷的調整算法來使得模型的表達能拿更強。但是優化到了一定程度就需要解決過擬合的問題了,這個問題也在學術界討論的比較多。(之前搜了很多有的博客 ...
目錄 1、基本介紹 2、原因 3、解決方法 4、正則化 4.2 L2正則化 4.1 L1正則化 1、基本介紹 過擬合:指為了得到一致性假設而使假設變得過度嚴格。在模型參數擬合過程中,由於訓練數據包含抽樣誤差 ...
1 過擬合 過擬合就是訓練模型的過程中,模型過度擬合訓練數據,而不能很好的泛化到測試數據集上。出現over-fitting的原因是多方面的: 1) 訓練數據過少,數據量與數據噪聲是成反比的,少量數據導致噪聲很大 2 )特征數目過多導致模型過於復雜,如下面的圖所示: 看上圖中的多項式回歸 ...
線性回歸例子 如果 \[{h_\theta }\left( x \right) = {\theta _0} + {\theta _1}x\] 通過線性回歸得到的曲線可能如下圖 這種情況下,曲線對數據的擬合程度不好。這種情況稱為“Underfit”,這種情況屬於“High bias”(高 ...
深度學習 (DeepLearning) 基礎 [4]---欠擬合、過擬合與正則化 Introduce 在上一篇“深度學習 (DeepLearning) 基礎 [3]---梯度下降法”中我們介紹了梯度下降的主要思想以及優化算法。本文將繼續學習深度學習的基礎知識,主要涉及: 欠擬合 ...