原文:深度學習中momentum參數的作用

訓練網絡時,通常先對網絡的初始權值按照某種分布進行初始化,合適的網絡初始權值能夠使得損失函數在訓練過程中的收斂速度更快,從而獲得更好的優化結果。但是按照某類分布隨機初始化網絡權值時,存在一些不確定因素,並不能保證每一次初始化操作都能使得網絡的初始權值處在一個合適的狀態。不恰當的初始權值可能使得網絡的損失函數在訓練過程中陷入局部最小值,達不到全局最優的狀態。因此,如何消除這種不確定性,是訓練深度網 ...

2021-08-26 17:04 0 135 推薦指數:

查看詳情

深度學習Momentum(動量方法)

轉自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上結論: 1.動量方法主要是為了解決Hessian矩陣病態條件問題(直觀上講就是梯度高度敏感於參數空間的某些方向)的。 2.加速學習 3.一般將參數設為 ...

Fri Oct 13 05:54:00 CST 2017 0 2521
深度學習(九) 深度學習最全優化方法總結比較(SGD,Momentum,Nesterov Momentum,Adagrad,Adadelta,RMSprop,Adam)

前言 這里討論的優化問題指的是,給定目標函數f(x),我們需要找到一組參數x(權重),使得f(x)的值最小。 本文以下內容假設讀者已經了解機器學習基本知識,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即隨機梯度下降。是梯度下降 ...

Wed Jan 17 06:08:00 CST 2018 0 12350
深度學習】CNN 1x1 卷積核的作用

深度學習】CNN 1x1 卷積核的作用 最近研究 GoogLeNet 和 VGG 神經網絡結構的時候,都看見了它們在某些層有采取 1x1 作為卷積核,起初的時候,對這個做法很是迷惑,這是因為之前接觸過的教材的例子中最小的卷積核 ...

Fri Mar 08 05:26:00 CST 2019 0 1021
深度學習面試題03:改進版梯度下降法Adagrad、RMSprop、Momentum、Adam

目錄   Adagrad法   RMSprop法   Momentum法   Adam法   參考資料 發展歷史 標准梯度下降法的缺陷 如果學習率選的不恰當會出現以上情況 因此有一些自動調學習率的方法。一般來說,隨着迭代次數的增加,學習率應該越來越小 ...

Wed Jul 03 21:57:00 CST 2019 1 1777
深度學習中常見的優化方法——SGD,Momentum,Adagrad,RMSprop, Adam

SGD SGD是深度學習中最常見的優化方法之一,雖然是最常使用的優化方法,但是卻有不少常見的問題。 learning rate不易確定,如果選擇過小的話,收斂速度會很慢,如果太大,loss function就會在極小值處不停的震盪甚至偏離。每個參數的learning rate都是相同 ...

Mon Mar 16 01:34:00 CST 2020 0 604
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM