提升方法 簡述:提升方法(boosting)是一種常用的統計學習方法,應用廣泛且有效。在分類問題中,它通過改變訓練樣本的權重,學習多個分類器,並將這些分類器進行線性組合,提高分類的性能。 本章 (1)介紹boosting方法的思路和代表性的boosting算法AdaBoost (2)通過訓練 ...
統計學習方法 第 版完整版下載 李航博士著作 所有的課件都是 ppt 格式,總共包含 章。正好是 統計學習方法 第 版的完整內容。 其中,第 章至第 章主要是 統計學習方法 第一版的內容。主要介紹統計學習及監督學習概論 感知機 近鄰法 朴素貝葉斯法 決策樹 邏輯斯諦回歸與最大熵模型 支持向量機 提升方法 EM 算法及其推廣 隱馬爾可夫模型 條件隨機場 監督學習方法總結。 找了很多的資料,唯獨這個 ...
2021-08-20 17:52 0 303 推薦指數:
提升方法 簡述:提升方法(boosting)是一種常用的統計學習方法,應用廣泛且有效。在分類問題中,它通過改變訓練樣本的權重,學習多個分類器,並將這些分類器進行線性組合,提高分類的性能。 本章 (1)介紹boosting方法的思路和代表性的boosting算法AdaBoost (2)通過訓練 ...
KNN算法 基本模型:給定一個訓練數據集,對新的輸入實例,在訓練數據集中找到與該實例最鄰近的k個實例。這k個實例的多數屬於某個類,就把輸入實例分為這個類。 KNN沒有顯式的學習過程。 KNN使用的模型實際上對應於特征空間的划分。特征空間中,對每個訓練實例點\(x_i\),距離該點比其它點更近 ...
寫在前面 本系列筆記主要記錄《統計學習方法》中7種常用的機器學習分類算法,包括感知機,KNN,朴素貝葉斯,決策樹,邏輯斯諦回歸與最大熵模型,SVM,boosting。 課本還涉及到3種算法是關於概率模型估計和標注問題的,暫未列入學習計划,所以筆記中沒有涉及,包括EM算法,隱馬爾可夫模型,條件 ...
轉自:https://github.com/SmirkCao/Lihang 最近又撿起了李航老師的《統計學習方法》開始啃,之前因為干貨太多一看就困索性放棄(捂臉~),突然在知乎上看到有大神的總結,希望大神能帶我飛哈哈。 [TOC] GitHub的markdown公式支持一般, 推薦使用 ...
10種統計學習方法特點的概括總結 本書共介紹了10種主要的統計學習方法:感知機,KNN,朴素貝葉斯,決策樹,邏輯斯諦回歸與最大熵模型,SVM,提升方法,EM算法,隱馬爾可夫模型,條件隨機場(CRF)。 適用問題 感知機,KNN,朴素貝葉斯,決策樹,邏輯斯諦回歸與最大熵模型,SVM,提升 ...
第一章 統計學習方法概論 統計學習的主要特點是: (1)統計學習以計算機及網絡為平台,是建立在計 算機及網絡之上的; (2)統計學習以數據為研究對象,是數據驅動的學科; (3)統 ...
第12章 統計學習方法總結 1 適用問題 分類問題是從實例的特征向量到類標記的預測問題; 標注問題 是從觀測序列到標記序列(或狀態序列)的預測問題。可以認為分類問題是標注 問題的特殊情況。 分類問題中可能的預測結果是二類或多類; 而標注問題 ...
提升(boosting) 方法是一種常用的統計學習方法,應用廣泛且有效.在分類問題中,它通過改變訓練樣本的權重,學習多個分類器,並將這些分類器進行線性組合,提高分類的性能.本章首先介紹提升方法的思路和代表性的提升算法AdaBoost; 然后通過訓練誤差分析探討AdaBoost ...