來源:https://www.jianshu.com/p/c02a1fbffad6 簡單易懂的softmax交叉熵損失函數求導 來寫一個softmax求導的推導過程,不僅可以給自己理清思路,還可以造福大眾,豈不美哉~ softmax經常被添加在分類任務的神經網絡中的輸出層,神經網絡的反向傳播中 ...
前言 最近有遇到些同學找我討論sigmoid訓練多標簽或者用在目標檢測中的問題,我想寫一些他們的東西,想到以前的博客里躺着這篇文章 年讀研時機器學課的作業 感覺雖然不夠嚴謹,但是很多地方還算直觀,就先把它放過來吧。 說明: 本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似 Logistic回歸和Softmax回歸兩者本質是一樣的,后面我會專門有一篇文章說明兩者關系,先在這里 ...
2021-08-05 11:01 2 170 推薦指數:
來源:https://www.jianshu.com/p/c02a1fbffad6 簡單易懂的softmax交叉熵損失函數求導 來寫一個softmax求導的推導過程,不僅可以給自己理清思路,還可以造福大眾,豈不美哉~ softmax經常被添加在分類任務的神經網絡中的輸出層,神經網絡的反向傳播中 ...
假設函數: 更為一般的表達式: (1) 似然函數: (2) 對數似然函數: 如果以上式作為目標函數,就需要最大化對數似然函數,我們這里選擇 最小化負的對數 ...
本文目錄: 1. sigmoid function (logistic function) 2. 邏輯回歸二分類模型 3. 神經網絡做二分類問題 4. python實現神經網絡做二分類問題 ...
前言 交叉熵損失函數 交叉熵損失函數的求導 前言 說明:本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似。 首先,我們二話不說,先放出 ...
原文:https://blog.csdn.net/jasonzzj/article/details/52017438 本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似。 交叉熵的公式 以及J(θ)对">J(θ)對J ...
http://blog.csdn.net/jasonzzj/article/details/52017438 ...
記錄一下,方便復習 總結: 參考:https://blog.csdn.net/lcczzu/article/details/88873854//交叉熵損失函數的作用及公式推導 ...