原文:深度學習中神經網絡模型的量化

深度學習神經網絡模型中的量化是指浮點數用定點數來表示,也就是在DSP技術中常說的Q格式。我在以前的文章 Android手機上Audio DSP頻率低 memory小的應對措施 中簡單講過Q格式,網上也有很多講Q格式的,這里就不細講了。神經網絡模型在訓練時都是浮點運算的,得到的模型參數也是浮點的。通常模型參數較多,在inference時也有非常多的乘累加運算。如果處理器的算力有限,在inferenc ...

2021-02-22 07:59 0 890 推薦指數:

查看詳情

zz神經網絡模型量化方法簡介

神經網絡模型量化方法簡介 https://chenrudan.github.io/blog/2018/10/02/networkquantization.html 2018-10-02 本文主要梳理了模型量化算法的一些文章,闡述了每篇文章主要的內核思想和量化過程,整理了一些 ...

Mon Sep 02 10:09:00 CST 2019 0 781
經典深度卷積神經網絡模型原理與實現

卷積神經網絡(Convolutional Neural Network,CNN)最初是為解決圖像識別等問題設計的,在早期的圖像識別研究,最大的挑戰是如何組織特征,因為圖像數據不像其他類型的數據那樣可以通過人工理解來提取特征。卷積神經網絡相比傳統的機器學習算法,無須手工提取特征,也不需要使用諸如 ...

Wed Feb 19 22:20:00 CST 2020 0 2890
深度學習之PyTorch實戰(2)——神經網絡模型搭建和參數優化

  上一篇博客先搭建了基礎環境,並熟悉了基礎知識,本節基於此,再進行深一步的學習。   接下來看看如何基於PyTorch深度學習框架用簡單快捷的方式搭建出復雜的神經網絡模型,同時讓模型參數的優化方法趨於高效。如同使用PyTorch的自動梯度方法一樣,在搭建復雜的神經網絡模型的時候,我們也可以使 ...

Sat Oct 27 00:38:00 CST 2018 1 17789
徑向基函數神經網絡模型學習算法

1985年,Powell提出了多變量插值的徑向基函數(RBF)方法。1988年Moody和Darken提出了一種神經網絡結構,即RBF神經網絡,屬於前向神經網絡類型,它能夠以任意精度逼近任意連續函數,特別適合於解決分類問題。 RBF網絡的結構與多層前向網絡類似,它是一種三層前向網絡。輸入層 ...

Fri Mar 17 23:37:00 CST 2017 0 5784
自組織神經網絡模型學習算法

自組織神經網絡又稱為自組織競爭神經網絡,特別適合於解決模式分類和識別方面的應用問題。該網絡模型屬於前向神經網絡模型,采用無監督學習算法,其工作的基本思想是讓競爭層的各個神經元通過競爭與輸入模式進行匹配,最后僅有一個神經元成為競爭的勝利者,這一獲勝神經元的輸出就代表對輸入模式的分類。 常用的自組織 ...

Fri Mar 17 23:38:00 CST 2017 0 1255
通過TensorFlow訓練神經網絡模型

神經網絡模型的訓練過程其實質上就是神經網絡參數的設置過程 在神經網絡優化算法中最常用的方法是反向傳播算法,下圖是反向傳播算法流程圖: 從上圖可知,反向傳播算法實現了一個迭代的過程,在每次迭代的開始,先需要選取一小部分訓練數據,這一小部分數據叫做一個batch。然后這一個batch會通過前 ...

Tue Mar 12 03:26:00 CST 2019 0 785
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM