引言 上一篇筆記中已經記錄了,如何對一個無解的線性方程組\(Ax=b\)求近似解。在這里,我們先來回顧兩個知識點: 如何判斷一個線性方程組無解:如果拿上面那個方程組\(Ax=b\)舉例,那就 ...
sum weights 可以通過參數設置。 如果不設置,那么值就是樣本的個數。 指定每個樣本的權重。 我突然想到基金預測,可以設置樣本的權重。 真實漲幅越高,權重越小。 反之,權重越高。 因為如果預測偏低,那么loss 損失越大。 rmse : sum loss 和 score label score label loss std::sqrt sum loss sum weights l : 誤 ...
2020-12-07 21:11 0 1347 推薦指數:
引言 上一篇筆記中已經記錄了,如何對一個無解的線性方程組\(Ax=b\)求近似解。在這里,我們先來回顧兩個知識點: 如何判斷一個線性方程組無解:如果拿上面那個方程組\(Ax=b\)舉例,那就 ...
的病人,你只能知道他3個月后到底是病危或者存活。所以線性回歸並不適用這種場景。 logistic函數 ...
參考鏈接:http://baijiahao.baidu.com/s?id=1603857666277651546&wfr=spider&for=pc 1. 平方損失函數:MSE- L2 Loss $$MSE = \sum_{i = 1}^n (y_i - \hat{y_i ...
https://www.cnblogs.com/cxchanpin/p/7359672.html https://www.cnblogs.com/yangzsnews/p/7496639.html ...
邏輯回歸可以用於處理二元分類問題,將輸出值控制在[0,1]區間內,為確保輸出值時鍾若在0到1之間,采用sigmoid函數,其具有該特性,將線性回歸訓練得到的模型輸出數據作z = x1*w1+x2*w2+...+xn*wn+b代入得到y,保證了y在0~1之間 邏輯回歸中用到sigmoid函數 ...
1. 均方誤差MSE 歸一化的均方誤差(NMSE) 2. 平均絕對誤差MAE 3. Huber損失函數 4. Log-Cosh損失函數 5. 實例 6. tanh Python中直接調用np.tanh ...
1、目標函數 (1)mean_squared_error / mse 均方誤差,常用的目標函數,公式為((y_pred-y_true)**2).mean()(2)mean_absolute_error / mae 絕對值均差,公式為(|y_pred-y_true|).mean ...
前言 最近有遇到些同學找我討論sigmoid訓練多標簽或者用在目標檢測中的問題,我想寫一些他們的東西,想到以前的博客里躺着這篇文章(2015年讀研時機器學課的作業)感覺雖然不夠嚴謹,但是很多地方還算直觀,就先把它放過來吧。 說明: 本文只討論Logistic回歸的交叉熵,對Softmax回歸 ...