等組成。 統計學習方法包括假設空間、模型選擇的准則、模型學習的算法,這些統稱為統計學習方法的三要素: ...
介紹 泛化誤差上界可理解為模型學習能力的 出錯上限 ,顯然,當樣本容量趨於無窮大時,泛化誤差上界趨於 . 本文介紹較簡單的二分類問題中的泛化誤差上界.以下先給出結論: 定理 在二分類問題中,若假設空間為有限個函數的集合 mathcal F left f , f , cdots, f d right , 對於任意一個函數 f in mathcal F ,至少以概率 delta , 以下不等式成立: ...
2020-09-23 19:51 2 1155 推薦指數:
等組成。 統計學習方法包括假設空間、模型選擇的准則、模型學習的算法,這些統稱為統計學習方法的三要素: ...
上學期花了一個多月讀完了李航老師的《統計學習方法》,現在帶着新入團隊的新同學以讀書會的形式讀這本書,書里邊全是干貨,對於我理解基本的機器學習算法很有幫助,也筆頭做了一些總結(不完全基於此書),現將其摘錄於此作為在博客園的第一篇博客。因為並不是為了掃盲,所以僅僅是抓出脈絡以及關鍵點,方便以后快速溫習 ...
統計學習 統計學習:也稱統計機器學習,是計算機基於數據構建概率統計模型,並用模型進行預測與分析的一門學科。 數據是統計學習的對象。統計學習關於數據的基本假設是同類數據具有一定的統計規律性,這是統計學習的前提。這些數據具有某種共同的性質,並且由於具有統計規律性,因此可以用統計學習方法來加以處理 ...
Adaboost 適用問題:二分類問題 模型:加法模型 \[f(x)=\sum_{m=1}^{M} \alpha_{m} G_{m}(x) \] 策略:損失函數為指數函 ...
) 2.2.1 坐標下降法 2.2.2 SMO求解方法 ...
作者:桂。 時間:2017-05-13 14:19:14 鏈接:http://www.cnblogs.com/xingshansi/p/6847334.html 、 前言 內容主要是CART算法的學習筆記。 CART算法是一個二叉樹問題,即總是有兩種選擇,而不像之前 ...
統計學習方法是基於訓練數據構建統計模型,從而對數據進行預測和分析。 統計學習分為,監督學習(supervised learning),非監督學習,半監督學習和強化學習(reinforcement learning),其中以監督學習最為常見和重要,所以這里只討論監督學習 統計學習的過程如下, 1. ...
第一章 統計學習方法概論 統計學習的主要特點是: (1)統計學習以計算機及網絡為平台,是建立在計 算機及網絡之上的; (2)統計學習以數據為研究對象,是數據驅動的學科; (3)統 ...