原文:強化學習 6 ——價值函數逼近

上篇文章強化學習 時序差分 TD 控制算法 Sarsa 和 Q Learning我們主要介紹了 Sarsa 和 Q Learning 兩種時序差分控制算法,在這兩種算法內部都要維護一張 Q 表格,對於小型的強化學習問題是非常靈活高效的。但是在狀態和可選動作非常多的問題中,這張Q表格就變得異常巨大,甚至超出內存,而且查找效率極其低下,從而限制了時序差分的應用場景。近些年來,隨着神經網絡的興起,基於深 ...

2020-09-06 20:54 0 539 推薦指數:

查看詳情

強化學習-價值迭代

1. 前言 在策略迭代最后我們發現策略迭代的收斂過程比較慢,那我們就會想有沒更好更快的迭代方法,今天我們介紹的價值迭代就是另一種尋找最優策略的解決方案。 2. 動態規划 價值迭代需要用到動態規划的思想,那我們簡單的回顧下動態規划的特點。 最優子結構:是指一個子問題的最優解是可以得到 ...

Sat Feb 16 17:12:00 CST 2019 0 1938
強化學習(八)價值函數的近似表示與Deep Q-Learning

    在強化學習系列的前七篇里,我們主要討論的都是規模比較小的強化學習問題求解算法。今天開始我們步入深度強化學習。這一篇關注於價值函數的近似表示和Deep Q-Learning算法。     Deep Q-Learning這一篇對應Sutton書的第11章部分和UCL強化學習課程的第六講 ...

Sat Sep 29 00:49:00 CST 2018 120 28479
強化學習入門之智能走迷宮-價值迭代算法

0x01 價值迭代算法基礎概念 0x01.1 獎勵 若要實現價值迭代,首先要定義價值,在迷宮任務中,到達目標將獲得獎勵。 特定時間t給出獎勵Rt稱為即時獎勵 未來獲得的獎勵總和Gt被稱為總獎勵 Gt=R(t+1)+R(t+2)+R(t+3) 考慮時間因素,需要引入折扣率 ...

Wed Jun 09 23:26:00 CST 2021 0 293
強化學習-價值迭代代碼實現

1. 前言 上一篇博客我們介紹了價值迭代的原理。這一節我們實現強化學習里面的價值迭代的部分代碼(完整代碼GitHub)。 2. 價值迭代回顧 我們把注意點放在值函數上,等值函數收斂了,我們的策略也會收斂到最優值。 \[v^{T+1}(s) =max_{a} \sum_{s_{t+1 ...

Sun Feb 17 03:25:00 CST 2019 0 1190
強化學習

機器學習分類: 強化學習是機器學習中的一個領域,強調如何基於環境而行動,以取得最大化的預期利益 強化學習基礎概念:Agent :主體,與環境交互的對象,動作的行使者Environment : 環境, 通常被規范為馬爾科夫決策過程(MDP)State : 環境狀態的集合Action ...

Wed Apr 18 06:20:00 CST 2018 0 924
強化學習總結

強化學習總結 強化學習的故事 強化學習學習一個最優策略(policy),可以讓本體(agent)在特定環境(environment)中,根據當前的狀態(state),做出行動(action),從而獲得最大回報(G or return)。 有限馬爾卡夫決策過程 馬爾卡夫決策過程理論 ...

Fri Mar 31 07:34:00 CST 2017 6 17833
強化學習——入門

強化學習強化學習作為一門靈感來源於心理學中的行為主義理論的學科,其內容涉及 概率論、統計學、逼近論、凸分析、計算復雜性理論、運籌學 等多學科知識,難度之大,門檻之高,導致其發展速度特別緩慢。 一種解釋: 人的一生其實都是不斷在強化學習,當你有個動作(action)在某個狀態 ...

Thu Sep 12 19:37:00 CST 2019 1 467
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM