在我的上一篇隨筆中,采用了單層神經網絡來對MNIST進行訓練,在測試集中只有約90%的正確率。這次換一種神經網絡(多層神經網絡)來進行訓練和測試。 1、獲取MNIST數據 MNIST數據集只要一行代碼就可以獲取的到,非常方便。關於MNIST的基本信息可以參考我的上一篇隨筆 ...
在實際應用中,我們常常需要自制數據集,解決本領域應用,而數據通常是圖片或文字,需要做格式轉換,才能在訓練時使用。 代碼: ...
2020-08-20 16:01 0 925 推薦指數:
在我的上一篇隨筆中,采用了單層神經網絡來對MNIST進行訓練,在測試集中只有約90%的正確率。這次換一種神經網絡(多層神經網絡)來進行訓練和測試。 1、獲取MNIST數據 MNIST數據集只要一行代碼就可以獲取的到,非常方便。關於MNIST的基本信息可以參考我的上一篇隨筆 ...
前面兩篇隨筆實現的單層神經網絡 和多層神經網絡, 在MNIST測試集上的正確率分別約為90%和96%。在換用多層神經網絡后,正確率已有很大的提升。這次將采用卷積神經網絡繼續進行測試。 1、模型基本結構 如下圖所示,本次采用的模型共有8層(包含dropout層)。其中卷積層 ...
初學tensorflow,參考了以下幾篇博客: soft模型 tensorflow構建全連接神經網絡 tensorflow構建卷積神經網絡 tensorflow構建卷積神經網絡 tensorflow構建CNN[待學習] 全連接+各種優化[待學習] BN層[待學習] 先 ...
網絡結構: 代碼如下: 測試的誤差和准確率: Final test loss and accuracy : [1.3201157276447002, 0.80188304] 下一次更新:LSTM情感分類問題 ...
原理就不多講了,直接上代碼,有詳細注釋。 結果 ...
首先是不含隱層的神經網絡, 輸入層是784個神經元 輸出層是10個神經元 代碼如下 結果如下 接下來是含一個隱層的神經網絡,輸入層是784個神經元,兩個隱層都是100個神經元,輸出層是10個神經元,迭代500次,最后准確率在88%左右,汗。。。。准確率反而降 ...
浙江財經大學專業實踐深度學習tensorflow——陽誠磚 1.案例描述 使用卷積神經網絡對CIFAR-10數據集進行分類 2.CIFAR-10數據集 2.1 下載CIFAR-10數據集 2.2 導入CIFAR-10數據集 2.3 顯示數據集信息 2.4 查看單項 ...
1、MNIST數據集簡介 首先通過下面兩行代碼獲取到TensorFlow內置的MNIST數據集: MNIST數據集共有55000(mnist.train.num_examples)張用於訓練的數據,對應的有55000個標簽;共有10000 ...