Introduction (1)Motivation: 解決跨模態reid的方法主要有兩類:模態共享特征學習(modality-shared feature learning)、模態特定特征補償( ...
. Motivation 目前大部分域自適應方法一般是分為兩種:input level 和 feature level。這些方法大部分都是在特征空間中進行操作,而這些特征同時包含 id related 和 id unrelated 信息,其中的 id unrelated 信息會干擾和限制域自適應的性能。 Cross domain Re ID 需要解決兩個問題:disentangling 解耦 和 ...
2020-07-28 11:18 0 983 推薦指數:
Introduction (1)Motivation: 解決跨模態reid的方法主要有兩類:模態共享特征學習(modality-shared feature learning)、模態特定特征補償( ...
Introduction 本文主要解決RGB-IR跨模態匹配問題。貢獻主要有三部分組成: ① 提出了 Hierarchical Cross-Modality Disentanglement(Hi-CMD)方法,該模塊的目的是排除姿態、光照這些冗余特征(ID-excluded)的影響,提取 ...
本文提出的方法思想是利用屬性信息來挖掘各個局部特征的權重,如下圖所示。 網絡框架如下圖。框架對人體的六組屬性進行了區分:性別&年齡、頭部、上半身、下半身、鞋子、背包拎包等,具體見下表。通 ...
Introduction (1)Motivation: 當前的reid存在語義不對齊的問題,如下圖: 圖(a)顯示了不同圖片的相同位置對應了行人的不同身體部位;圖(b)顯示了不同圖片呈現的部 ...
Introduction 為了提取兩個特征之間的相關性,設計了Relation Module(RM)來計算相關性向量; 為了減小背景干擾,關注局部的信息區域,采用了Relation-Guided ...
參考曠視研究院推文【傳送門】 Introduction (1)Motivation: 遮擋行人重識別(Occluded Person ReID)更具有挑戰性: ① 受到遮擋的影響,圖像的判別信息更少,更容易匹配到錯誤的行人; ② 基於身體部位之間的特征信息做匹配雖然有效,但在被遮擋 ...
Introduction 本文主要提出了高效且容易實現的STA框架(Spatial-Temporal Attention)來解決大規模video Reid問題。框架中融合了一些創新元素:幀選取、判別 ...
Introduction 本文有如下3個貢獻: ① 提出了一個自下而上(bottom-up)的聚類框架(BUC)來解決無監督的ReID問題; ② 采用repelled損失來優化模型,repell ...