已遷移到我新博客,閱讀體驗更佳基於sklearn的分類器實戰 完整代碼實現見github:click me 一、實驗說明 1.1 任務描述 1.2 數據說明 一共有十個數據集,數據集中的數據屬性有全部是離散型的,有全部是連續型的,也有離散與連續混合型的。通過對各個數據集的瀏覽 ...
分類器性能評估指標 一 精度 召回率 F度量 Precision Recall F measure 准確率和混淆矩陣 二 損失函數 Loss Function 三 接收機操作曲線 ROC Curve 回歸器效能評估方法 ...
2020-06-18 23:17 0 593 推薦指數:
已遷移到我新博客,閱讀體驗更佳基於sklearn的分類器實戰 完整代碼實現見github:click me 一、實驗說明 1.1 任務描述 1.2 數據說明 一共有十個數據集,數據集中的數據屬性有全部是離散型的,有全部是連續型的,也有離散與連續混合型的。通過對各個數據集的瀏覽 ...
這幾天在看 sklearn 的文檔,發現他的分類器有很多,這里做一些簡略的記錄。 大致可以將這些分類器分成兩類: 1)單一分類器,2)集成分類器 一、單一分類器 下面這個例子對一些單一分類器效果做了比較 下圖是效果圖: 二、集成分類器 集成分類器有四種 ...
注:本文是人工智能研究網的學習筆記 ROC是什么 二元分類器(binary classifier)的分類結果 ROC空間 最好的預測模型在左上角,代表100%的靈敏度和0%的虛警率,被稱為完美分類器。 一個隨機猜測模型。會給出從左下角到右上角的沿着對角線的點(對角線被稱作 ...
注:本文是人工智能研究網的學習筆記 准確率 accuracy_score:函數計算分類准確率,返回被正確分類的樣本比例(default)或者是數量(normalize=False) 在多標簽分類問題中,該函數返回子集的准確率,對於一個給定的多標簽樣本,如果預測得到的標簽集合與該樣本 ...
原型 class sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None) 參數 Parameters: alpha : float, optional ...
對比決策樹和隨機森林 隨機森林的袋外數據 在有放回的抽樣中,有一部分數據會被反復抽到,可能有一部分數據一直沒有被抽到,這部分數據就 ...
KNeighborsClassifier參數說明KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', lea ...
了幾種分類器的效果,並直觀的顯示之 效果圖: 說明: 1.原 ...