對於分類問題的神經網絡最后一層的函數做如下知識點總結: sigmoid和softmax一般用作神經網絡的最后一層做分類函數(備注:sigmoid也用作中間層做激活函數); 對於類別數量大於2的分類問題,如果每個類別之間互斥,則選用softmax函數(例如:類別為牡丹花、玫瑰花、菊花 ...
最后一層是sigmoid或者softmax激活函數的神經網絡,為什么不適合用平方誤差損失函數 ...
2020-05-16 22:33 0 550 推薦指數:
對於分類問題的神經網絡最后一層的函數做如下知識點總結: sigmoid和softmax一般用作神經網絡的最后一層做分類函數(備注:sigmoid也用作中間層做激活函數); 對於類別數量大於2的分類問題,如果每個類別之間互斥,則選用softmax函數(例如:類別為牡丹花、玫瑰花、菊花 ...
神經網絡激活函數softmax,sigmoid,tanh,relu總結 一、總結 一句話總結: 常見激活函數:softmax、sigmoid、tanh、relu 二、【神經網絡】激活函數softmax,sigmoid,tanh,relu總結 轉自或參考:【神經網絡】激活函數 ...
主體代碼 NeuronNetwork.java package com.rockbb.math.nnetwork; import java.util.ArrayList; import j ...
Softmax回歸模型是logistic回歸模型在多分類問題上的推廣,適用於多分類問題中,且類別之間互斥的場合。 Softmax將多個神經元的輸出,映射到(0,1)區間內,可以看成是當前輸出是屬於各個分類的概率,從而來進行多分類。 假設有一個數組V,Vi表示V中的第i個元素,那么Vi元素 ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
https://blog.csdn.net/danyhgc/article/details/73850546 什么是激活函數 為什么要用 都有什么 sigmoid ,ReLU, softmax 的比較 如何選擇 1. 什么是激活函數 如下圖,在神經元中,輸入 ...
OUTPUT ...
為什么引入激活函數? 如果不用激勵函數(其實相當於激勵函數是f(x) = x),在這種情況下你每一層輸出都是上層輸入的線性函數,很容易驗證,無論你神經網絡有多少層,輸出都是輸入的線性組合,與沒有隱藏層效果相當,這種情況就是最原始的感知機(Perceptron)了。 正因為上面的原因,我們決定 ...