原文:深度學習中的激活函數之 sigmoid、tanh和ReLU

三種非線性激活函數sigmoid tanh ReLU。 sigmoid:y e x tanh:y ex e x ex e x ReLU:y max , x 在隱藏層,tanh函數要優於sigmoid函數,可以看作是sigmoid的平移版本,優勢在於其取值為 , ,數據的平均值為 ,而sigmoid的平均值為 . ,有類似數據中心化的效果。 但在輸出層,sigmoid可能會優於tanh,原因在於我 ...

2020-04-13 20:01 0 2503 推薦指數:

查看詳情

激活函數sigmoidtanhrelu、Swish

激活函數的作用主要是引入非線性因素,解決線性模型表達能力不足的缺陷   sigmoid函數可以從圖像中看出,當x向兩端走的時候,y值越來越接近1和-1,這種現象稱為飽和,飽和意味着當x=100和x=1000的映射結果是一樣的,這種轉化相當於將1000大於100的信息丟失了很多,所以一般需要歸一化 ...

Thu Sep 27 06:24:00 CST 2018 0 3885
激活函數的比較,sigmoidtanhrelu

1. 什么是激活函數 如下圖,在神經元,輸入inputs通過加權、求和后,還被作用了一個函數。這個函數就是激活函數Activation Function 2. 為什么要用激活函數 如果不用激活函數,每一層輸出都是上層輸入的線性函數,無論神經網路有多少層,輸出都是輸入的線性組合 ...

Sat Mar 23 22:08:00 CST 2019 0 623
激活函數(Activation functions)--(sigmoidtanhReLu

1 激活函數(Activation functions) 之前用過 sigmoid 函數,sigmoid 函數在這里被稱為激活函數,公式為: 更通常的情況下,使用不同的函數g(z[1]),g可以是除了 sigmoid 函數意外的非線性函數 ,效果總是優於 sigmoid ...

Sun Jul 25 23:40:00 CST 2021 0 229
神經網絡激活函數具體是什么?為什么ReLu要好過於tanhsigmoid function?(轉)

為什么引入激活函數? 如果不用激勵函數(其實相當於激勵函數是f(x) = x),在這種情況下你每一層輸出都是上層輸入的線性函數,很容易驗證,無論你神經網絡有多少層,輸出都是輸入的線性組合,與沒有隱藏層效果相當,這種情況就是最原始的感知機(Perceptron)了。 正因為上面的原因,我們決定 ...

Fri Aug 31 03:46:00 CST 2018 0 1144
神經網絡激活函數tanh sigmoid RELU softplus softmatx

所謂激活函數,就是在神經網絡的神經元上運行的函數,負責將神經元的輸入映射到輸出端。常見的激活函數包括Sigmoid、TanHyperbolic(tanh)、ReLu、 softplus以及softmax函數。這些函數有一個共同的特點那就是他們都是非線性的函數。那么我們為什么要在神經網絡引入非線性 ...

Thu May 11 19:04:00 CST 2017 0 6070
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM