如果使用多GPU訓練模型,推薦使用內置fit方法,較為方便,僅需添加2行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 GPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_多GPU》: https ...
深度學習的訓練過程常常非常耗時,一個模型訓練幾個小時是家常便飯,訓練幾天也是常有的事情,有時候甚至要訓練幾十天。 訓練過程的耗時主要來自於兩個部分,一部分來自數據准備,另一部分來自參數迭代。 當數據准備過程還是模型訓練時間的主要瓶頸時,我們可以使用更多進程來准備數據。 當參數迭代過程成為訓練時間的主要瓶頸時,我們通常的方法是應用GPU或者Google的TPU來進行加速。 詳見 用GPU加速Kera ...
2020-04-13 12:31 0 4172 推薦指數:
如果使用多GPU訓練模型,推薦使用內置fit方法,較為方便,僅需添加2行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 GPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_多GPU》: https ...
如果想嘗試使用Google Colab上的TPU來訓練模型,也是非常方便,僅需添加6行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 TPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_TPU》: https ...
本篇文章介紹在spark中調用訓練好的tensorflow模型進行預測的方法。 本文內容的學習需要一定的spark和scala基礎。 如果使用pyspark的話會比較簡單,只需要在每個excutor上用Python加載模型分別預測就可以了。 但工程上為了性能考慮,通常使用的是scala版本 ...
最近對tensorflow十分感興趣,所以想做一個系列來詳細講解tensorflow來。 本教程主要由tensorflow2.0官方教程的個人學習復現筆記整理而來,並借鑒了一些keras構造神經網絡的方法,中文講解,方便喜歡閱讀中文教程的朋友,tensorflow官方教程:https ...
1.一般的模型構造、訓練、測試流程 2.自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 _init_(self),初始化。 update_state(self,y_true,y_pred,sample_weight = None),它使用目標y_true ...
1.一般的模型構造、訓練、測試流程 2.自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 _init_(self),初始化。 update_state(self,y_true,y_pred,sample_weight = None),它使用目標y_true ...
一、保存、讀取說明 我們創建好模型之后需要保存模型,以方便后續對模型的讀取與調用,保存模型我們可能有下面三種需求:1、只保存模型權重參數;2、同時保存模型圖結構與權重參數;3、在訓練過程的檢查點保存模型數據。下面分別對這三種需求進行實現。 二、僅保存模型參數 僅保存模型參數 ...