常見的數據標准化方法有以下6種: 1、Min-Max標准化 Min-Max標准化是指對原始數據進行線性變換,將值映射到[0,1]之間 2、Z-Score標准化 Z-Score(也叫Standard Score,標准分數)標准化是指:基於原始數據的均值(mean)和標准差(standard ...
常見的數據標准化方法有以下6種: 1、Min-Max標准化 Min-Max標准化是指對原始數據進行線性變換,將值映射到[0,1]之間 2、Z-Score標准化 Z-Score(也叫Standard Score,標准分數)標准化是指:基於原始數據的均值(mean)和標准差(standard ...
(一)離差標准化數據 離差表轉化是對原始數據的一種線性變換,結果是將原始的數據映射到[0,1]區間之間,轉換公式為: 其中 max 為樣本數據的最大值,min 為樣本數據的最小值,max-min 為極差。利差標准化保留了原始數據值之間的聯系,是消除量綱和數據取值范圍 ...
1 為何需要標准化 有的數據,不同維度的數量級差別較大,導致有的維度會主導整個分析過程。如下圖所示: 該圖的數據維度\(d=30\),樣本量\(n=40\),上面的圖是對原始數據做PCA后,第一個PC在各個維度上的權重的平行坐標圖,下面的圖則是對數據做標准化之后的情況。可以發現,在原始數據 ...
為:\n',x) print('method1:指定均值方差數據標准化(默認均值0 方差 1):') pr ...
說明: 通過sklearn庫進行數據集標准化,對訓練數據做預處理,對測試集做同樣的標准化。 1、通過函數scale() 函數介紹: 函數: sklearn.preprocessing.scale(X, axis=0, with_mean ...
本人人工智能初學者,現在在學習TensorFlow2.0,對一些學習內容做一下筆記。筆記中,有些內容理解可能較為膚淺、有偏差等,各位在閱讀時如有發現問題,請評論或者郵箱(右側邊欄有郵箱地址)提醒。 若有小伙伴需要筆記的可復制的html或ipynb格式文件,請評論區留下你們的郵箱,或者郵箱(右側 ...
.caret, .dropup > .btn > .caret { border-top-color: #000 !important ...