閱讀了tensorflow的代碼,dropout的實現如下 ...
每一個output的值都有prob的概率被保留,如果保留 input prob,否則變為 dropout相當於一個過濾層,tensorflow不僅丟棄部分input,同時將保留下的部分適量地增加以試圖彌補梯度 ...
2020-03-16 21:27 0 671 推薦指數:
閱讀了tensorflow的代碼,dropout的實現如下 ...
1、dropout dropout 是指在深度學習網絡的訓練過程中,按照一定的概率將一部分神經網絡單元暫時從網絡中丟棄,相當於從原始的網絡中找到一個更瘦的網絡,這篇博客中講的非常詳細 2、tensorflow實現 用dropout ...
有增加權重的懲罰機制,比如L2正規化,但在本處我們使用tensorflow提供的dropout方法,在訓練 ...
一:適用范圍: tf.nn.dropout是TensorFlow里面為了防止或減輕過擬合而使用的函數,它一般用在全連接層 二:原理: dropout就是在不同的訓練過程中隨機扔掉一部分神經元。也就是讓某個神經元的激活值以一定的概率p,讓其停止工作,這次訓練過程中不更新權值,也不參加 ...
1.dropout dropout是一種常用的手段,用來防止過擬合的,dropout的意思是在訓練過程中每次都隨機選擇一部分節點不要去學習,減少神經元的數量來降低模型的復雜度,同時增加模型的泛化能力。雖然會使得學習速度降低,因而需要合理的設置保留的節點數量。 在TensorFlow中 ...
tf.nn.dropout函數 定義在:tensorflow/python/ops/nn_ops.py. 請參閱指南:層(contrib)>用於構建神經網絡層的高級操作,神經網絡>激活函數 該函數用於計算dropout. 使用概率keep_prob,輸出 ...
官方的接口是這樣的 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 根據給出的keep_prob參數,將輸入tensor x按比例輸出。 默認情況下, 每個元素保存或丟棄都是獨立的。 x ...