Spark提供了常用機器學習算法的實現, 封裝於spark.ml和spark.mllib中. spark.mllib是基於RDD的機器學習庫, spark.ml是基於DataFrame的機器學習庫. 相對於RDD, DataFrame擁有更豐富的操作API, 可以進行更靈活的操作. 目前 ...
本文主要對 Spark ML庫下模型評估指標的講解,以下代碼均以Jupyter Notebook進行講解,Spark版本為 . . 。模型評估指標位於包org.apache.spark.ml.evaluation下。 模型評估指標是指測試集的評估指標,而不是訓練集的評估指標 回歸評估指標 RegressionEvaluator Evaluator for regression, which exp ...
2020-03-03 21:50 2 1478 推薦指數:
Spark提供了常用機器學習算法的實現, 封裝於spark.ml和spark.mllib中. spark.mllib是基於RDD的機器學習庫, spark.ml是基於DataFrame的機器學習庫. 相對於RDD, DataFrame擁有更豐富的操作API, 可以進行更靈活的操作. 目前 ...
MLlib 是 Spark 的機器學習庫,旨在簡化機器學習的工程實踐工作,並方便擴展到更大規模。MLlib 由一些通用的學習算法和工具組成,包括分類、回歸、聚類、協同過濾、降維等,同時還包括底層的優化原語和高層的管道 API。具體來說,主要包括以下幾方面的內容: 機器學習算法:常用的學習 ...
常用機器學習算法包括分類、回歸、聚類等幾大類型,以下針對不同模型總結其評估指標 一、分類模型 常見的分類模型包括:邏輯回歸、決策樹、朴素貝葉斯、SVM、神經網絡等,模型評估指標包括以下幾種: (1)二分類問題 (a)混淆矩陣 准確率A:預測正確個數占總數的比例 ...
參考:https://www.cnblogs.com/zongfa/p/9431807.html 在使用機器學習算法過程中,針對不同的問題需要不用的模型評估標准,這里統一匯總。主要以兩大類分類與回歸分別闡述。 一、分類問題 1、混淆矩陣 混淆矩陣是監督學習中 ...
參考:https://zhuanlan.zhihu.com/p/36305931 1、回歸(Regression)算法指標 Mean Absolute Error 平均絕對誤差 Mean Squared Error 均方誤差 ...
共有以下幾種評價指標: 其中,僅輪廓系數比較合理,別的不過是牽強附會罷了,就差欺世盜名了。 混淆矩陣均- -性完整性V-measure調整蘭德系數(ARI)調整互信息(AMI)輪廓系數(Silhouette) 輪廓系數: ...
在使用機器學習算法過程中,針對不同的問題需要不用的模型評估標准,這里統一匯總。主要以兩大類分類與回歸分別闡述。 一、分類問題 1、混淆矩陣 混淆矩陣是監督學習中的一種可視化工具,主要用於比較分類結果和實例的真實信息。矩陣中的每一行代表實例的預測類別,每一列代表實例的真實類別 ...
1. 回歸(Regression)算法指標 Mean Absolute Error 平均絕對誤差 Mean Squared Error 均方誤差 Root Mean Squared Error:均方根誤差 Coefficient of determination 決定系數 ...