原文:感知機與梯度下降法

.什么是感知機 感知機是一種線性分類模型,屬於判別模型。感知機模型的假設空間是定義在特征空間中的所有線性分類模型或線性分類器,即函數集合。 .感知機學習策略 . 數據集的線性可分性 給定一個數據集,其中,,,, 如果存在某個超平面,能夠將數據集的正實例點和負實例點完全正確地划分到超平面的兩側,即對所有的實例,有,對所有的實例,有,則稱數據集為線性可分數據集。 . 損失函數 損失函數的一個自然選擇 ...

2020-03-03 12:54 0 779 推薦指數:

查看詳情

感知機梯度推導

一、單層感知機(Perceptron)   1、定義:多個輸入直接加權求和后,得到一個輸出節點,經過激活函數,得到一個值      2、單層感知機求導      導數結果,只與激活函數 O0 和 輸入節點 xj 有關   3、pytorch中實現單層感知機    二、多層 ...

Wed Apr 01 01:08:00 CST 2020 0 629
梯度下降法和隨機梯度下降法

1. 梯度   在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。比如函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,簡稱grad f(x,y)或者▽f(x,y)。對於在點(x0,y0)的具體梯度向量 ...

Sat Jun 01 23:33:00 CST 2019 0 2193
梯度下降法和隨機梯度下降法

(1)梯度下降法 在迭代問題中,每一次更新w的值,更新的增量為ηv,其中η表示的是步長,v表示的是方向 要尋找目標函數曲線的波谷,采用貪心法:想象一個小人站在半山腰,他朝哪個方向跨一步,可以使他距離谷底更近(位置更低),就朝這個方向前進。這個方向可以通過微分得到。選擇足夠小的一段曲線 ...

Fri Dec 16 01:50:00 CST 2016 0 34664
梯度下降法分析

梯度下降法存在的問題   梯度下降法的基本思想是函數沿着其梯度方向增加最快,反之,沿着其梯度反方向減小最快。在前面的線性回歸和邏輯回歸中,都采用了梯度下降法來求解。梯度下降的迭代公式為: \(\begin{aligned} \theta_j=\theta_j-\alpha\frac ...

Mon Apr 20 23:54:00 CST 2015 3 2537
梯度下降法小結

關於機器學習的方法,大多算法都用到了最優化求最優解問題。梯度下降法(gradient descent)是求解無約束最優化問題的一種最常用的方法。它是一種最簡單,歷史悠長的算法,但是它應用非常廣。下面主要在淺易的理解: 一、梯度下降的初步認識 先理解下什么是梯度,用通俗的話來說就是在原變量 ...

Wed Jul 24 08:19:00 CST 2019 0 561
梯度下降法小結

1. 前言 今天我們聊一聊機器學習和深度學習里面都至關重要的一個環節,優化損失函數。我們知道一個模型只有損失函數收斂到了一定的值,才有可能會有好的結果,降低損失方式的工作就是優化方法需要做的事。下面會討論一些常用的優化方法:梯度下降法家族、牛頓法、擬牛頓法、共軛梯度法、Momentum ...

Wed Oct 17 06:51:00 CST 2018 0 12955
隨機梯度下降法

 在求解機器學習算法的模型參數,即無約束優化問題時,梯度下降(Gradient Descent)是最常采用的方法之一,另一種常用的方法是最小二乘法。這里就對梯度下降法做一個完整的總結。 1. 梯度     在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來 ...

Sat Mar 24 05:06:00 CST 2018 0 2165
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM