原因 3.梯度消失與梯度爆炸的解決方案 首先讓我們先來了解一個概念:什么是梯度不穩定呢? ...
梯度消失和梯度爆炸其實是一種情況:均是在神經網絡中,當前面隱藏層的學習速率低於后面隱藏層的學習速率,即隨着隱藏層數目的增加,分類准確率反而下降了。 梯度消失產生的原因: 隱藏層的層數過多 采用了不合適的激活函數 更容易產生梯度消失,但是也有可能產生梯度爆炸 梯度爆炸產生的原因: 隱藏層的層數太多 權重初始化值過大。 為什么說隱藏層數過多會造成梯度消失或梯度爆炸 從深層網絡角度來講,不同的層學習的速 ...
2020-02-23 21:08 0 2032 推薦指數:
原因 3.梯度消失與梯度爆炸的解決方案 首先讓我們先來了解一個概念:什么是梯度不穩定呢? ...
梯度在神經網絡中的作用 在談梯度消失和梯度爆炸的問題之前,我們先來考慮一下為什么我們要利用梯度,同時鋪墊一些公式,以便於后面的理解。 存在梯度消失和梯度爆炸問題的根本原因就是我們在深度神網絡中利用反向傳播的思想來進行權重的更新。即根據損失函數計算出的誤差,然后通過梯度反向傳播來減小誤差、更新 ...
1、RNN模型結構 循環神經網絡RNN(Recurrent Neural Network)會記憶之前的信息,並利用之前的信息影響后面結點的輸出。也就是說,循環神經網絡的隱藏層之間的結點是有連接的 ...
RNN梯度消失和爆炸的原因 經典的RNN結構如下圖所示: 假設我們的時間序列只有三段, 為給定值,神經元沒有激活函數,則RNN最簡單的前向傳播過程如下: 假設在t=3時刻,損失函數為 。 則對於一次訓練任務的損失函數為 ,即每一時刻損失值的累加 ...
1.為什么使用梯度下降來優化神經網絡參數? 反向傳播(用於優化神網參數):根據損失函數計算的誤差通過反向傳播的方式,指導深度網絡參數的更新優化。 采取反向傳播的原因:首先,深層網絡由許多線性層和非線性層堆疊而來,每一層非線性層都可以視為是一個非線性函數(非線性來自於非線性 ...
一、梯度消失、梯度爆炸產生的原因 說白了,對於1.1 1.2,其實就是矩陣的高次冪導致的。在多層神經網絡中,影響因素主要是權值和激活函數的偏導數。 1.1 前饋網絡 假設存在一個網絡結構如圖: 其表達式為: 若要對於w1求梯度,根據鏈式求導法則,得到的解 ...
一、梯度不穩定問題: 什么是梯度不穩定問題:深度神經網絡中的梯度不穩定性,前面層中的梯度或會消失,或會爆炸。 原因:前面層上的梯度是來自於后面層上梯度的乘乘積。當存在過多的層次時,就出現了內在本質上的不穩定場景,如梯度消失和梯度爆炸。 二、梯度消失(vanishing gradient ...
【轉載自 https://blog.csdn.net/program_developer/article/details/80032376】 一、神經網絡梯度消失與梯度爆炸 (1)簡介梯度消失與梯度爆炸 層數比較多的神經網絡模型在訓練的時候會出現梯度消失(gradient ...