前言 交叉熵損失函數 交叉熵損失函數的求導 前言 說明:本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似。 首先,我們二話不說,先放出 ...
記錄一下,方便復習 總結: 參考:https: blog.csdn.net lcczzu article details 交叉熵損失函數的作用及公式推導 ...
2020-02-20 07:54 0 778 推薦指數:
前言 交叉熵損失函數 交叉熵損失函數的求導 前言 說明:本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似。 首先,我們二話不說,先放出 ...
原文:https://blog.csdn.net/jasonzzj/article/details/52017438 本文只討論Logistic回歸的交叉熵,對Softmax回歸的交叉熵類似。 交叉熵的公式 以及J(θ)对">J(θ)對J ...
http://blog.csdn.net/jasonzzj/article/details/52017438 ...
來源:https://www.jianshu.com/p/c02a1fbffad6 簡單易懂的softmax交叉熵損失函數求導 來寫一個softmax求導的推導過程,不僅可以給自己理清思路,還可以造福大眾,豈不美哉~ softmax經常被添加在分類任務的神經網絡中的輸出層,神經網絡的反向傳播中 ...
前言 最近有遇到些同學找我討論sigmoid訓練多標簽或者用在目標檢測中的問題,我想寫一些他們的東西,想到以前的博客里躺着這篇文章(2015年讀研時機器學課的作業)感覺雖然不夠嚴謹,但是很多地方還算直觀,就先把它放過來吧。 說明: 本文只討論Logistic回歸的交叉熵,對Softmax回歸 ...
交叉熵損失函數(作用及公式推導) 一、總結 一句話總結: $$C = - \frac { 1 } { n } \sum _ { x } [ y \ln a + ( 1 - y ) \ln ( 1 - a ) ]$$ 1、平方差損失函數的不足? 使用平方差損失函數訓練ANN ...
交叉熵損失函數 熵的本質是香濃信息量\(\log(\frac{1}{p})\)的期望 既然熵的本質是香濃信息量\(\log(\frac{1}{p})\)的期望,那么便有 \[H(p)=E[p_i\times\log(\frac{1}{p_i})]=\sum p_i\times ...
1. Cross entropy 交叉熵損失函數用於二分類損失函數的計算,其公式為: 其中y為真值,y'為估計值.當真值y為1時, 函數圖形: 可見此時y'越接近1損失函數的值越小,越接近0損失函數的值越大. 當真值y為0時, 函數圖形: 可見此時y'越接近0損失 ...