在一定范圍內,從而避免了梯度消失和爆炸的發生。下面介紹一種最基本的歸一化:批量歸一化(BN, Batch ...
. 批量歸一化 Batch Normalization :為了讓數據在訓練過程中保持同一分布,在每一個隱藏層進行批量歸一化。對於每一個batch,計算該batch的均值與方差,在將線性計算結果送入激活函數之前,先對計算結果進行批量歸一化處理,即減均值 除標准差,保證計算結果符合均值為 ,方差為 的標准正態分布,然后再將計算結果作為激活函數的輸入值進行計算。 批量歸一化的本質:對於每個隱層神經元, ...
2020-01-31 18:18 0 872 推薦指數:
在一定范圍內,從而避免了梯度消失和爆炸的發生。下面介紹一種最基本的歸一化:批量歸一化(BN, Batch ...
為了解決在深度神經網絡訓練初期降低梯度消失/爆炸問題,Sergey loffe和Christian Szegedy提出了使用批量歸一化的技術的方案,該技術包括在每一層激活函數之前在模型里加一個操作,簡單零中心化和歸一化輸入,之后再通過每層的兩個新參數(一個縮放,另一個移動)縮放和移動結果,話 ...
批量歸一化 論文地址:https://arxiv.org/abs/1502.03167 批量歸一化基本上是現在模型的標配了. 說實在的,到今天我也沒搞明白batch normalize能夠使得模型訓練更穩定的底層原因,要徹底搞清楚,涉及到很多凸優化的理論,需要非常扎實的數學基礎才行. 目前為止 ...
論文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift Internal Covariate Shift 深度神經網絡涉及到很多層 ...
Normalization(簡稱BN)就是對每一批數據進行歸一化,確實如此,對於訓練中某一個batch的數據{x1 ...
批歸一化方法方法(Batch Normalization,BatchNorm)是由Ioffe和Szegedy於2015年提出的,已被廣泛應用在深度學習中,其目的是對神經網絡中間層的輸出進行標准化處理,使得中間層的輸出更加穩定。 通常我們會對神經網絡的數據進行標准化處理,處理后的樣本數據集滿足均值 ...
目錄 BN的由來 BN的作用 BN的操作階段 BN的操作流程 BN可以防止梯度消失嗎 為什么歸一化后還要放縮和平移 BN在GoogLeNet中的應用 參考資料 BN的由來 ...
目錄 BN的由來 BN的作用 BN的操作階段 BN的操作流程 BN可以防止梯度消失嗎 為什么歸一化后還要放縮和平移 BN在GoogLeNet中的應用 參考資料 BN的由來 BN ...