原文:前向傳播和反向傳播實戰(Tensor)

前面在mnist中使用了三個非線性層來增加模型復雜度,並通過最小化損失函數來更新參數,下面實用最底層的方式即張量進行前向傳播 暫不采用層的概念 。 主要注意點如下: 進行梯度運算時,tensorflow只對tf.Variable類型的變量進行記錄,而不對tf.Tensor或者其他類型的變量記錄 進行梯度更新時,如果采用賦值方法更新即w w x的形式,那么所得的w 是tf.Tensor類型的變量,所 ...

2020-01-22 18:36 1 680 推薦指數:

查看詳情

傳播反向傳播

傳播 通過輸入樣本x及參數\(w^{[1]}\)、\(b^{[1]}\)到隱藏層,求得\(z^{[1]}\),進而求得\(a^{[1]}\); 再將參數\(w^{[2]}\)、\(b^{[2]}\)和\(a^{[1]}\)一起輸入輸出層求得\(z^{[2]}\),進而求得 ...

Wed Apr 10 22:33:00 CST 2019 0 968
4-2 傳播反向傳播

傳播反向傳播( Forward and backward propagation) 傳播 假設輸入${a^{[l - 1]}}$,輸出${a^{[l]}}$,緩存${z^{[l]}}$,從實現的角度來說緩存${w^{[l]}}$,${b^{[l]}}$更容易在不同的環節調用函數 ...

Sat Aug 25 22:56:00 CST 2018 0 1013
深度學習中的傳播反向傳播

在深度學習中,傳播反向傳播是很重要的概念,因此我們需要對傳播反向傳播有更加深刻的理解,假設這里有一個三層的神經網絡 在這里,上面一排表示的是傳播,后面一排表示的是反向傳播,在前向傳播的情況每一層將通過一層激活函數去線性化,並且在前向傳播的過程中會緩存z[l],最終輸出y ...

Wed Dec 19 01:07:00 CST 2018 0 841
神經網絡傳播反向傳播

神經網絡 神經網絡可以理解為一個輸入x到輸出y的映射函數,即f(x)=y,其中這個映射f就是我們所要訓練的網絡參數w,我們只要訓練出來了參數w,那么對於任何輸入x,我們就能得到一個與之對應的輸出y。 ...

Wed Sep 16 04:50:00 CST 2020 0 675
傳播(張量)- 實戰

目錄 手寫數字識別流程 傳播(張量)- 實戰 手寫數字識別流程 MNIST手寫數字集7000*10張圖片 60k張圖片訓練,10k張圖片測試 每張圖片是28*28,如果是彩色圖片是28*28*3 0-255表示圖片的灰度值,0表示純白 ...

Sun May 12 02:08:00 CST 2019 0 681
詳解神經網絡的傳播反向傳播(從頭推導)

詳解神經網絡的傳播反向傳播本篇博客是對Michael Nielsen所著的《Neural Network and Deep Learning》第2章內容的解讀,有興趣的朋友可以直接閱讀原文Neural Network and Deep Learning。   對神經網絡有些了解的人 ...

Sun Nov 14 07:22:00 CST 2021 0 179
神經網絡,傳播FP和反向傳播BP

1 神經網絡 神經網絡就是將許多個單一“神經元”聯結在一起,這樣,一個“神經元”的輸出就可以是另一個“神經元”的輸入。例如,下圖就是一個簡單的神經網絡: 我們使用圓圈來表示 ...

Sat Jul 28 00:52:00 CST 2018 0 2024
傳播算法(Forward propagation)與反向傳播算法(Back propagation)

雖然學深度學習有一段時間了,但是對於一些算法的具體實現還是模糊不清,用了很久也不是很了解。因此特意先對深度學習中的相關基礎概念做一下總結。先看看傳播算法(Forward propagation)與反向傳播算法(Back propagation)。 1.傳播 ...

Sun Apr 28 03:57:00 CST 2019 0 713
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM