原文:強化學習方法小結

花了一天時間大致了解了強化學習一些經典算法,總結成如下筆記。筆記中出現不少流程圖,不是我自己畫的都標了出處。 鋪墊 . Bellman方程 在介紹強化學習算法之前先介紹一個比較重要的概念,就是Bellman方程,該方程表示動作價值函數,即在某一個狀態下,計算出每種動作所對應的value 或者說預期的reward 。 begin aligned v s amp mathbb E left G t ...

2019-12-23 17:37 0 2179 推薦指數:

查看詳情

推薦系統(17)—— 強化學習方法概述

0、什么是強化學習   強化學習是一類算法, 是讓計算機實現從一開始什么都不懂, 腦袋里沒有一點想法, 通過不斷地嘗試, 從錯誤中學習, 最后找到規律, 學會了達到目的的方法. 這就是一個完整的強化學習過程。   原來計算機也需要一位虛擬的老師, 這個老師比較吝嗇, 他不會告訴你如何移動 ...

Sun Aug 22 21:34:00 CST 2021 0 142
深度強化學習方法 策略迭代 & 值迭代

RL是一個序列化決策過程,核心思想是通過與環境的不斷交互學習獲得最大回報; 大部分RL方法都是基於MDP的;MDP的本質是獲得一個可以使累計收益最大化的策略,並使用該策略選擇最佳動作; 動態規划是RL中的一個關鍵技術,適用於RL中已知模型求解最優策略的特殊情況,主要有 策略迭代 和 值 ...

Sat Sep 26 20:04:00 CST 2020 0 498
淺談強化學習方法學習路線

介紹 目前,對於全球科學家而言,“如何去學習一種新技能”成為了一個最基本的研究問題。為什么要解決這個問題的初衷是顯而易見的,如果我們理解了這個問題,那么我們可以使人類做一些我們以前可能沒有想到的事。或者,我們可以訓練去做更多的“人類”工作,常遭一個真正的人工智能時代 ...

Mon Mar 19 06:32:00 CST 2018 7 6217
強化學習 —— 幾種基礎方法比較

  這半年有幾次機緣巧合的機會來給其他人科普強化學習的基本概念,我總體上是分成兩部分來講的:第一部分是強化學習背景和常用概念介紹;第二部分是 DQN、DDPG、PPO、SAC 四個算法的比較。這里分享一下第二部分的 slides。   此外我 ...

Wed Sep 16 05:06:00 CST 2020 0 820
強化學習

機器學習分類: 強化學習是機器學習中的一個領域,強調如何基於環境而行動,以取得最大化的預期利益 強化學習基礎概念:Agent :主體,與環境交互的對象,動作的行使者Environment : 環境, 通常被規范為馬爾科夫決策過程(MDP)State : 環境狀態的集合Action ...

Wed Apr 18 06:20:00 CST 2018 0 924
強化學習總結

強化學習總結 強化學習的故事 強化學習學習一個最優策略(policy),可以讓本體(agent)在特定環境(environment)中,根據當前的狀態(state),做出行動(action),從而獲得最大回報(G or return)。 有限馬爾卡夫決策過程 馬爾卡夫決策過程理論 ...

Fri Mar 31 07:34:00 CST 2017 6 17833
強化學習——入門

強化學習強化學習作為一門靈感來源於心理學中的行為主義理論的學科,其內容涉及 概率論、統計學、逼近論、凸分析、計算復雜性理論、運籌學 等多學科知識,難度之大,門檻之高,導致其發展速度特別緩慢。 一種解釋: 人的一生其實都是不斷在強化學習,當你有個動作(action)在某個狀態 ...

Thu Sep 12 19:37:00 CST 2019 1 467
強化學習(MATLAB)

1. 定義 機器學習算法可以分為3種:有監督學習(Supervised Learning)、無監督學習(Unsupervised Learning)和強化學習(Reinforcement Learning)。強化學習(Reinforcement Learning, RL),又稱再勵學習、評價學習 ...

Wed Mar 25 00:51:00 CST 2020 1 9767
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM