GAN的全稱是 Generative Adversarial Networks,中文名稱是生成對抗網絡。原始的GAN是一種無監督學習方法,巧妙的利用“博弈”的思想來學習生成式模型。 1 GAN的原理 GAN的基本原理很簡單,其由兩個網絡組成,一個是生成網絡G(Generator ...
先放結果 這是通過GAN迭代訓練 W次,耗時 小時生成的手寫字圖片效果,大部分的還是能看出來是數字的。 實現原理 簡單說下原理,生成對抗網絡需要訓練兩個任務,一個叫生成器,一個叫判別器,如字面意思,一個負責生成圖片,一個負責判別圖片,生成器不斷生成新的圖片,然后判別器去判斷哪兒哪兒不行,生成器再不斷去改進,不斷的像真實的圖片靠近。 這就如同一個造假團伙一樣,A負責生產,B負責就鑒定,剛開始的時候, ...
2019-12-08 14:22 0 243 推薦指數:
GAN的全稱是 Generative Adversarial Networks,中文名稱是生成對抗網絡。原始的GAN是一種無監督學習方法,巧妙的利用“博弈”的思想來學習生成式模型。 1 GAN的原理 GAN的基本原理很簡單,其由兩個網絡組成,一個是生成網絡G(Generator ...
GAN 簡介 GAN,Generative Adversarial Networks,生成對抗網絡; GAN 被認為是 AI 領域 最有趣的 idea,一句話,歷史地位很高,很火; GAN 是由 Goodfellow 大神在 2014 年提出來的,當時的 G 神還只是個蒙特利爾大學的博士生 ...
Ian J. Goodfellow等人於2014年在論文Generative Adversarial Nets中提出了一個通過對抗過程估計生成模型的新框架。框架中同時訓練兩個模型:一個生成模型(generative model)G,用來捕獲數據分布;一個判別模型(discriminative ...
轉自:https://zhuanlan.zhihu.com/p/24767059,感謝分享 生成式對抗網絡(GAN)是近年來大熱的深度學習模型。最近正好有空看了這方面的一些論文,跑了一個GAN的代碼,於是寫了這篇文章來介紹一下GAN。本文主要分為三個部分: 介紹原始的GAN的原理 ...
論文地址:https://arxiv.org/pdf/1406.2661.pdf 1、簡介: GAN的兩個模型 判別模型:就是圖中右半部分的網絡,直觀來看就是一個簡單的神經網絡結構,輸入就是一副圖像,輸出就是一個概率值,用於判斷真假使用(概率值大於0.5那就是真,小於0.5 ...
轉自:https://blog.csdn.net/ch18328071580/article/details/96690016 概述 1、什么是GAN? 生成對抗網絡簡稱GAN,是由兩個網絡組成的,一個生成器網絡和一個判別器網絡。這兩個網絡可以是神經網絡(從卷積神經網絡、循環神經網絡到自編 ...
轉載:https://wiki.pathmind.com/generative-adversarial-network-gan 轉載:https://wiki.pathmind.com/ 轉載:https://zhuanlan.zhihu.com/p/42606381 轉載:https ...