原文:卷積核filter和kernal的區別

在一堆介紹卷積的帖子中,這篇特別之處在於很萌的示例配色,令人眼前一亮,當然直觀也是很直觀滴,保證了能在昏昏欲睡見周公子前看完。 https: towardsdatascience.com types of convolution kernels simplified f cb c 直觀介紹各種迷人的CNN層 一個簡短的介紹 卷積使用 kernel 從輸入圖像中提取某些 特征 。kernel是一個矩 ...

2019-11-30 23:23 0 1923 推薦指數:

查看詳情

卷積核

以一張圖片作為開始吧: 這里的輸入數據是大小為(8×8)的彩色圖片,其中每一個都稱之為一個feature map,這里共有3個。所以如果是灰度圖,則只有一個feature map。 進行卷積操作時,需要指定卷積核的大小,圖中卷積核的大小為3,多出來的一維3不需要在代碼中指定,它會 ...

Fri Dec 04 06:38:00 CST 2020 0 751
卷積層、卷積核

每個卷積核具有長、寬、深三個維度。 卷積核的長、寬都是人為指定的,長X寬也被稱為卷積核的尺寸,常用的尺寸為3X3,5X5等;卷積核的深度與當前圖像的深度(feather map的張數)相同,所以指定卷積核時,只需指定其長和寬兩個參數。 例如,在原始圖像層 (輸入層),如果圖像是灰度圖像 ...

Sun Feb 06 00:35:00 CST 2022 0 1118
1*1的卷積核的原理及作用

1.原理 對於1*1的卷積核來說,實際上就是實現不同通道數據之間的計算,由於卷積窗口為1*1,那么他不會對同一通道上相鄰的數據進行改變,而是將不同通道之間的數據進行相加. 輸入和輸出具有相同的高和寬。輸出中的每個元素來自輸入中在高和寬上相同位置的元素在不同通道之間的按權重累加 ...

Thu Oct 21 22:05:00 CST 2021 0 1401
卷積核及其個數的理解

第一次接觸的時候,已經理解了,但是過了一段時間,就有點忘了下面這兩篇文章,不錯!可以幫助回憶與理解。 https://blog.csdn.net/zyqdragon/article/details/ ...

Sat Jul 11 00:48:00 CST 2020 0 855
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM