比較忙,有兩周沒有總結一下工作學習中遇到的問題。 這篇主要是關於機器學習中的數據預處理的scaler變 ...
數據標准化是數據預處理的重要步驟。 sklearn.preprocessing下包含StandardScaler, MinMaxScaler, RobustScaler三種數據標准化方法。本文結合sklearn文檔,對各個標准化方法的應用場景以及優缺點加以總結概括。 首先,不同類型的機器學習模型對scaling的依賴如下: Tree based models doesn t depend on s ...
2019-11-25 22:29 0 483 推薦指數:
比較忙,有兩周沒有總結一下工作學習中遇到的問題。 這篇主要是關於機器學習中的數據預處理的scaler變 ...
在機器學習回歸問題,以及訓練神經網絡過程中,通常需要對原始數據進行中心化(零均值化)與標准化(歸一化)處理。 1背景 在數據挖掘數據處理過程中,不同評價指標往往具有不同的量綱和量綱單位,這樣的情況會影響到數據分析的結果,為了消除指標之間的量綱影響,需要進行數據標准化處理,以解決數據指標之間 ...
對於數據的預處理分在思想上稱之為歸一化以及標准化(normalization)。 首先將歸一化/ 標准化,就是將數據縮放(映射)到一個范圍內,比如[0,1],[-1,1],還有在圖形處理中將顏色處理為[0,255];歸一化的好處就是不同緯度的數據在相近的取值范圍內,這樣在進行梯度下降這樣的算法 ...
1. 概要 數據預處理在眾多深度學習算法中都起着重要作用,實際情況中,將數據做歸一化和白化處理后,很多算法能夠發揮最佳效果。然而除非對這些算法有豐富的使用經驗,否則預處理的精確參數並非顯而易見。 2. 數據歸一化及其應用 數據預處理中 ...
通常,在Data Science中,預處理數據有一個很關鍵的步驟就是數據的標准化。這里主要引用sklearn文檔中的一些東西來說明,主要把各個標准化方法的應用場景以及優缺點總結概括,以來充當筆記。 首先,我要引用我自己的文章Feature Preprocessing on Kaggle 里面 ...
數據預處理之中心化(零均值化)與標准化(歸一化) 轉載自:https://www.cnblogs.com/wangqiang9/p/9285594.html 寫的比較清晰的博客:https://blog.csdn.net/qq_36523839/article/details/82919412 ...
在機器學習回歸問題,以及訓練神經網絡過程中,通常需要對原始數據進行中心化(零均值化)與標准化(歸一化)處理。 背景 在數據挖掘數據處理過程中,不同評價指標往往具有不同的量綱和量綱單位,這樣的情況會影響到數據分析的結果,為了消除指標之間的量綱影響,需要進行數據標准化處理,以解決數據指標之間 ...
綱處理方法很多,使用不同的方法,對最終的機器學習模型會產生不同的影響。本文將對常用的無量綱化技術進行總結 ...