原文:TensorFlow2.0教程-使用keras訓練模型

.一般的模型構造 訓練 測試流程 .自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 init self ,初始化。 update state self,y true,y pred,sample weight None ,它使用目標y true和模型預測y pred來更新狀態變量。 result self ,它使用狀態變量來計算最終結果。 reset states self ...

2019-11-22 22:20 0 480 推薦指數:

查看詳情

TensorFlow2.0教程2:使用keras訓練模型

  最近對tensorflow十分感興趣,所以想做一個系列來詳細講解tensorflow來。   本教程主要由tensorflow2.0官方教程的個人學習復現筆記整理而來,並借鑒了一些keras構造神經網絡的方法,中文講解,方便喜歡閱讀中文教程的朋友,tensorflow官方教程:https ...

Thu Aug 22 22:02:00 CST 2019 0 2937
TensorFlow2.0教程-使用keras訓練模型

1.一般的模型構造、訓練、測試流程 2.自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 _init_(self),初始化。 update_state(self,y_true,y_pred,sample_weight = None),它使用目標y_true ...

Mon Apr 27 16:58:00 CST 2020 0 890
tensorflow2.0使用多GPU訓練模型

如果使用多GPU訓練模型,推薦使用內置fit方法,較為方便,僅需添加2行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 GPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_多GPU》: https ...

Mon Apr 13 20:57:00 CST 2020 0 3437
tensorflow2.0使用單GPU訓練模型

深度學習的訓練過程常常非常耗時,一個模型訓練幾個小時是家常便飯,訓練幾天也是常有的事情,有時候甚至要訓練幾十天。 訓練過程的耗時主要來自於兩個部分,一部分來自數據准備,另一部分來自參數迭代。 當數據准備過程還是模型訓練時間的主要瓶頸時,我們可以使用更多進程來准備數據。 當參數迭代過程成為訓練 ...

Mon Apr 13 20:31:00 CST 2020 0 4172
tensorflow2.0使用TPU訓練模型

如果想嘗試使用Google Colab上的TPU來訓練模型,也是非常方便,僅需添加6行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 TPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_TPU》: https ...

Mon Apr 13 21:06:00 CST 2020 0 1658
TensorFlow2.0教程4:keras模型保存和序列化

  1.保持序列模型和函數模型   # 構建一個簡單的模型訓練   from __future__ import absolute_import, division, print_function   import tensorflow as tf ...

Mon Aug 26 18:59:00 CST 2019 0 874
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM