均方差損失函數mse_loss()與交叉熵損失函數cross_entropy() 1.均方差損失函數mse_loss() 均方差損失函數是預測數據和原始數據對應點誤差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N為樣本個數,y ...
https: blog.csdn.net weixin article details 常用於多分類任務,NLLLoss 函數輸入 input 之前,需要對 input 進行 log softmax 處理,即將 input 轉換成概率分布的形式,並且取對數,底數為 e class torch.nn.NLLLoss weight None, size average None, ignore ind ...
2019-11-22 20:34 0 1313 推薦指數:
均方差損失函數mse_loss()與交叉熵損失函數cross_entropy() 1.均方差損失函數mse_loss() 均方差損失函數是預測數據和原始數據對應點誤差的平方和的均值。 \[MSE=\frac{1}{N}( y^`−y)^2 \] N為樣本個數,y ...
1.CrossEntropyLoss()損失函數 交叉熵主要是用來判定實際的輸出與期望的輸出的接近程度,為什么這么說呢,舉個例子:在做分類的訓練的時候,如果一個樣本屬於第K類,那么這個類別所對應的的輸出節點的輸出值應該為1,而其他節點的輸出都為0,即[0,0,1,0,….0,0],這個數組也就 ...
誤差越小越好。 PyTorch中的nn模塊提供了多種可直接使用的深度學習損失函數,如交叉熵、均方誤 ...
損失函數通過調用torch.nn包實現。 基本用法: L1范數損失 L1Loss 計算 output 和 target 之差的絕對值。 均方誤差損失 MSELoss 計算 output 和 target 之差的均方差。 交叉 ...
官方文檔:https://pytorch.org/docs/stable/nn.html#loss-functions 1:torch.nn.L1Loss mean absolute error (MAE) between each element in the input x ...
1. torch.nn.MSELoss 均方損失函數,一般損失函數都是計算一個 batch 數據總的損失,而不是計算單個樣本的損失。 $$L = (x - y)^{2}$$ 這里 $L, x, y$ 的維度是一樣的,可以是向量或者矩陣(有多個樣本組合),這里的平方是針對 ...
損失函數的基本用法: 得到的loss結果已經對mini-batch數量取了平均值 1.BCELoss(二分類) 創建一個衡量目標和輸出之間二進制交叉熵的criterion unreduced loss函數(即reduction參數設置為'none ...
1.激活函數 2.loss及其梯度 2.1均方差(MSE) 均方損失函數torch.nn.mse_loss(pred, target) 2.2梯度計算 torch.autograd.grad(loss, [w1, w2 ...