背景 特征工程是繞不開的話題,巧妙的特征組合也許能夠為模型帶來質的提升。但同時,特征工程耗費的資源也是相當可觀的,對於后期模型特征的維護、模型線上部署不太友好。2016年,微軟提出Deep Crossing模型,旨在解決特征工程中特征組合的難題,降低人力特征組合的時間開銷,通過模型自動學習特征 ...
背景 在CTR預估任務中,線性模型仍占有半壁江山。利用手工構造的交叉組合特征來使線性模型具有 記憶性 ,使模型記住共現頻率較高的特征組合,往往也能達到一個不錯的baseline,且可解釋性強。但這種方式有着較為明顯的缺點:首先,特征工程需要耗費太多精力。其次,因為模型是強行記住這些組合特征的,所以對於未曾出現過的特征組合,權重系數為 ,無法進行泛化。 為了加強模型的泛化能力,研究者引入了DNN結構 ...
2019-11-17 22:30 0 952 推薦指數:
背景 特征工程是繞不開的話題,巧妙的特征組合也許能夠為模型帶來質的提升。但同時,特征工程耗費的資源也是相當可觀的,對於后期模型特征的維護、模型線上部署不太友好。2016年,微軟提出Deep Crossing模型,旨在解決特征工程中特征組合的難題,降低人力特征組合的時間開銷,通過模型自動學習特征 ...
在讀了FM和FNN/PNN的論文后,來學習一下16年的一篇Google的論文,文章將傳統的LR和DNN組合構成一個wide&deep模型(並行結構),既保留了LR的擬合能力,又具有DNN的泛化能力,並且不需要單獨訓練模型,可以方便模型的迭代,一起來看下吧。 原文:Wide & ...
推薦系統模型演化 目錄 Wide&Deep DeepFM DCN xDeepFm LR-->GBDT+LR FM-->FFM-->GBDT+FM|FFM FTRL-->GBDT+FTRL ...
Wide&Deep learning 最近調試了幾天WDL,留個筆記。 WDL是Google在2016年的paper,目標是用於自己Google play中的app推薦。 官方介紹 paper download 推薦系統 推薦系統主要分為兩個部分,檢索系統(Retrieval ...
推薦系統在電商等平台使用廣泛,這里討論wide&deep推薦模型,初始是由google推出的,主要用於app的推薦。 概念理解 Wide & Deep模型,旨在使得訓練得到的模型能夠同時獲得記憶(memorization)和泛化(generalization)能力 ...
背景 在推薦領域CTR(click-through rate)預估任務中,最常用到的baseline模型就是LR(Logistic Regression)。對數據進行特征工程,構造出大量單特征,編碼之后送入模型。這種線性模型的優勢在於,運算速度快可解釋性強,在特征挖掘完備且訓練數據充分的前提下 ...
背景 在FM之后出現了很多基於FM的升級改造工作,由於計算復雜度等原因,FM通常只對特征進行二階交叉。當面對海量高度稀疏的用戶行為反饋數據時,二階交叉往往是不夠的,三階、四階甚至更高階的組合交叉能夠 ...
背景 上一篇文章介紹了FNN [2],在FM的基礎上引入了DNN對特征進行高階組合提高模型表現。但FNN並不是完美的,針對FNN的缺點上交與UCL於2016年聯合提出一種新的改進模型PNN(Prod ...