太棒啦!到目前為止,你已經了解了如何定義神經網絡、計算損失,以及更新網絡權重。不過,現在你可能會思考以下幾個方面: 0x01 數據集 通常,當你需要處理圖像、文本、音頻或視頻數據時,你可以使用標准的python包將數據加載到numpy數組中。然后你可以將該數組轉換成一個torch ...
Learn From: Pytroch 官方Tutorials Pytorch 官方文檔 環境:python . CUDA pytorch . vscode jupyter擴展 結果: ...
2019-10-20 09:22 0 390 推薦指數:
太棒啦!到目前為止,你已經了解了如何定義神經網絡、計算損失,以及更新網絡權重。不過,現在你可能會思考以下幾個方面: 0x01 數據集 通常,當你需要處理圖像、文本、音頻或視頻數據時,你可以使用標准的python包將數據加載到numpy數組中。然后你可以將該數組轉換成一個torch ...
[深度學習] Pytorch(三)—— 多/單GPU、CPU,訓練保存、加載預測模型問題 上一篇實踐學習中,遇到了在多/單個GPU、GPU與CPU的不同環境下訓練保存、加載使用使用模型的問題,如果保存、加載的上述三類環境不同,加載時會出錯。就去研究了一下,做了實驗,得出以下結論: 多/單GPU ...
自定義層Linear必須繼承nn.Module,並且在其構造函數中需調用nn.Module的構造函數,即super(Linear, self).__init__() 或nn.Module.__init__(self),推薦使用第一種用法,盡管第二種寫法更直觀。 在構造函數 ...
如果你曾經做過做過深度學習的模型,並試圖將他在本機上訓練一下,因為你覺得你的筆記本性能還可以,於是你開始train你的模型,首先你看到loss下降很慢,每個batch需要花費8.4秒左右的樣子: 然后你的CPU開始狂轉,風扇全功率運行,風聲大作,堅持了幾分鍾實在受不了了,你果斷的關閉了進程 ...
torch.load('tensors.pt') # 把所有的張量加載到CPU中 torch.load('tensors.pt', map_location=lambda storage, loc: storage) # 把所有的張量加載到GPU 1中 torch ...
本文將介紹: torch.nn包 定義一個簡單的nn架構 定義優化器、損失函數 梯度的反向傳播 將使用LeNet-5架構進行說明 一、torch.nn包 torch.nn包來構建網絡; torch.nn.Module類作為自定義類的基類 ...
模型訓練的三要素:數據處理、損失函數、優化算法 數據處理(模塊torch.utils.data) 從線性回歸的的簡潔實現-初始化模型參數(模塊torch.nn.init)開始 from torch.nn import init # pytorch的init模塊提供了多中參數 ...
一、簡介: adaboost分類器由級聯分類器構成,"級聯"是指最終的分類器是由幾個簡單分類器級聯組成。在圖像檢測中,被檢窗口依次通過每一級分類器,這樣在前面幾層的檢測中大部分的候選區域就被排除了,全部通過每一級分類器檢測的區域即為目標區域。 分類器訓練完以后,就可以應用於輸入圖像中 ...